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1. Executive summary

Event  management is  central  in  the  ebbits  architecture  as  a  conceptual  model  and  execution 
mechanism for the integrating of physical world events with enterprise systems, pursuing the vision 
for the IoTS. This report provides a background to and a basis for the design and implementation of 
the ebbits event management subsystem. 

The architecture style of ebbits can be characterized as  Event-driven SOA, integrating intelligent 
services with advanced semantic event processing and business rules. Thus events can range from 
lower  level  atomic  signals  to  higher  level  semantically  enriched  message  carriers.  On  a  higher 
abstraction layer ebbits events are mapped to business rules, which can make use of intelligent 
services, to implement the business logic for reporting, actuation of devices, as well as for further 
event generation. In this way the ebbits platform will be able to support the concept of closed loop 
eventing on different levels of abstraction. 

The first level of event processing is the mapping of events to the perimeter systems which are 
generating the event stimuli and providing entry points for actuation.  Thus, this report takes its 
starting point in the data structures and communications protocols employed in the two application 
domains  in  the  project,  the  factory  automation scenario  and  the  food  traceability scenario 
respectively. In the  former domain there is a certain level of standardization, in terms of factory 
automation  protocols  and  standards  for  information  exchange,  in  farming  and  food  systems, 
proprietary and special purpose systems dominate but ISO standards are available for information 
exchange. 

We then present our view of the state-of-the-art in event management and in semantic support for 
sensor and event systems, with relevance for ebbits. A number of event management systems have 
been proposed, many of which are based on the well-known publish and subscribe event processing 
pattern. Semantic support for sensor and event systems include the use of ontologies and mark-up 
languages for the modelling of  stimuli,  sensor devices,  events  and actors  in  such systems. The 
middleware developed within the Hydra project, is one of the baseline technologies for ebbits, which 
also provides a publish & subscribe event management solution as well as semantic support in terms 
of ontologies over events, services and devices. 

Finally, we describe our proposal for an initial event model for ebbits, based on the Hydra ontologies 
in combination with  the SSN – Sensor model promoted by the W3C. This model is subject to further 
design and implementation. 
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2. Introduction

The  ebbits  platform  aims  to  support  interoperable  business  applications  with  context-aware 
processing of data separated in time and space,  information and real-world events (addressing 
tags, sensor and actuators as services), people and workflows (operator and maintenance  crews), 
optimisation  using  high  level  business  rules  (energy  or  cost  performance  criteria).  The  key 
requirements  for  the  business  rules  execution  is  that  the  ebbits  platform  needs  to  be  able  to 
recognise  and  respond  to   physical  world  events.  The  information  acquired  from  events  from 
physical  world generated by various devices create the basis for decision making at the several 
levels of the ebbits architecture, including data fusion, situation patterns recognition, complex event 
processing, analysis of historical acquired data, etc.

All of above mentioned requirements needs to work with the large amount of information related to 
the devices generating the events or providing the services for further processing by event/service 
orchestration, decision or business rules. In some cases it must be possible to use this information to 
analyse the historical data generated by particular events. 

All  parts of decision making process will  be supported by the rich semantic model enabling the 
flexible knowledge representation of all included events, roles, services and processes.

2.1 Purpose, context and scope of this deliverable

The ebbits infrastructure will have to deal with the various types of events, which will be processed 
and  mapped  to  the  real-world  actions  or  to  the  recommendations  for  the  human  manual 
intervention. The purpose of this deliverable is to design the preliminary semantic model describing 
the low-level events generated by the devices. Although the ebbits will have to be aware also of 
higher level events describing e.g. system statuses or human actions, the scope is bounded only to 
the modeling of events related to the devices. The design of the preliminary ontology is based on  
the  state  of  the  art  in  the  area  of  real-world  data  structures  commonly  used  by  the  devices, 
overview of publisher/subscriber event management architectures and the assumptions based on 
the past experiences from the Hydra event management framework. The first ontology design will 
cover  all  assumed requirements derived from this  information.  The content  of  ontology will,  of 
course, evolve with the continually growing user requirements and requirements on the software 
architecture.
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3. Physical world data structures

This chapter provides an analysis of the state-of-the-art on data structures currently considered 
within the “physical world” (including devices and sub-systems) of both the manufacturing and the  
food traceability scenarios. 

3.1 Data structures in manufacturing scenario 

Along the years, many attempts have been made by different standardization bodies to provide  
comprehensive solutions for networked monitoring and control in industrial scenarios. Nowadays,  
the  proposed  communication  technologies  are  being  widely  adopted,  actually  building 
environments where different heterogeneous solutions coexist and are not always interoperable.  
As far as the data structures are concerned, several  standards have been presented but their  
widely adoption is still far from being real. In fact, end-users commonly use data structures highly 
customized for specific manufacturing scenarios and for very specific purposes. 

A major reason for having such a custom approach being adopted by industrial manufacturers is  
that  the  computerization  of  industrial  plants  has  been  pursued  on  top  of  already  existing 
automation solutions. In fact, the integration of the new technologies is sometimes hindered by its  
remarkable  impact  on  work  organization  and  human  resources.  In  addition,  the  available 
standards  could  be  less  optimized  compared  to  customized  solutions  defined  for  a  specific 
manufacturing plant. 

In the following, the data structures considered in the Common Industrial Protocol [CIP, 2010] will 
be  described  as  they  can  be  adopted  in  several  industrial  networks  including  EtherNet/IP,  
DeviceNet, CompoNet and ControlNet [ODVA, 2011]. Moreover, an example of customized solution 
will be provided.

3.1.1 Common Industrial Protocol (CIP)

CIP is a media independent, connection-based, object-oriented protocol designed for automation  
applications. While the main focus of the proposed protocol  supported by the Open DeviceNet  
Vendors  Association  (ODVA)  is  on  the  definition  of  communication  architecture  suitable  for 
industrial  automation,  CIP  also  supports  interoperability  at  application  level  by  using  abstract  
object modelling. Accordingly, industrial automation devices can be seen as CIP nodes described 
by a collection of objects that actually specify nodes functionalities. 

CIP objects  expose specific attributes and services and can be grouped into three main types 
according to the class of functionality considered:  general-use,  application-specific and network-
specific. Objects can be either publicly defined or vendor-specific.

Moreover, CIP objects representing the same type of system component are grouped in a class. A 
specific  representation  of  an  object  belonging  to  a  given  class  is  called  instance and  is 
characterized by distinct attributes values. It is worth mentioning that the object attributes  are 
expressed using the data types defined in  standard IEC 61131-3  [IEC, 2003]. According to this 
standard, the data types can be elementary (basic data types) or structured (array or structure of 
elementary data types). Common data types used in CIP include:

• 1-bit (encoded into 1-byte) – Boolean, BOOL;

• 1-byte – Bit string/8 bits/BYTE, Unsigned 8-bit integer/USINT, Signed 8-bit integer/SINT;

• 2-byte – Bit string/16-bits/WORD, Unsigned 16-bit integer/UINT, Signed 16-bit integer/INT;

• 4-byte –  Bit  string/32-bits/DWORD,  Unsigned  32-bit  integer/UDINT,  Signed  32-bit 
integer/DINT.

CIP also introduces  device  profiles that  allow to  model  manufacturing devices by means of  a 
specific collection of objects. Different manufacturing devices have been already modelled e.g.,  
fluid  flow  controllers,  inductive  proximity  switches,  process  control  valves.  For  each  of  the  
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modelled devices, the standard specifies the set of mandatory and optional objects that need to  
be supported. For instance, a motor starter is composed by an identity object, an overload object 
and a discrete output object [CIP, 2001]. The structure of identity object is reported in the table 
1.

Identity Object

Mandatory Attributes Optional Attributes

Vendor ID (UINT) State (UINT)

Device Type (USINT/UINT) Configuration Consistency Value

Product Code (UINT) Heartbeat Interval (UINT)

Revision (USINT) Languages Supported

Status

Serial Number (DWORD)

Product Name (ASCII string)

Table 1. CIP Identity Object.

The resulting CIP object oriented data structures contained within each device can be accessed by 
using  an  addressing  scheme  organized  as  follows:  [Class  ID]  [Instance  ID]  [Attribute  ID,  if  
required]. The figure 1 shows a CIP object addressing example.

Figure 1. CIP object addressing example - Copyright © ODVA

3.1.2 Customized solution

In this subsection, an example of customized solution provided by COMAU is presented. 

The considered scenario relates to a production line composed of different stations, each controlled 
by a “station PLC”. Such PLC has the responsibility to control  all  the operations at station level 
including robot synchronization, units clamping and system transportation. In addition, the same PLC 
periodically transfers information about the station functioning to a “manufacturing line server” that 
is in charge of managing all the stations of the considered production line. 

In fact, the interaction among the station PLC and both sensors and actuators present in the station 
is  usually  handled  only  at  PLC  station  level.  With  respect  to  the  possible  integration  of  the 
manufacturing line into the ebbits platform, the main focus is then on the communication between 
the  station  PLC  and  the  manufacturing  line  server  and  the  underlying  data  structures.  More 
specifically, the only information exposed by a PLC is a high level description of the production 
status and system anomalies. In practice, this represents the basic information required to calculate 
OEE (Overall Equipment Efficiency) [OEE; 2011] performance and prepare general reports.
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Custom data structures are adopted to manage the following information:

• Station status: is the current status of the station being controlled by the PLC. Station 
status  is  associated  to  a  priority  level  and  possible  relevant  values  include  Residual,  
Emergency stop, Blocked, Empty line, Manual and Wait for cycle start.

• Anomalies:  refer  to  anomalies  and  alarms  in  the  monitored  manufacturing  line.  The 
provided data includes the type of anomaly, the location where the anomaly has been 
detected, a brief description of the anomaly and a relevant identifier.

• Cycle time: is the time required by the system to complete the specific  manufacturing 
process. The count starts from the beginning of the operation and stops every time the 
system is not producing. The cycle is restarted for every piece of product.

• Counters of the production process:  are a set of counters and timers providing additional 
information  on  the  production  status.  Counters  include  e.g.  the  number  of  produced 
elements  within  1  hour/24hour,  the  number  of  good  parts  and  scraps.  Timers  are 
associated to e.g. Shift, Residual and production times.

Standard data types are used to define the custom data structures.

3.2 Data structures in food traceability scenario

Food traceability covers the entire life-cycle of the food, from the farm to the fork. However, in  
this document, the focus is mainly on the farm environment. 

In such environment,  current management solutions are based on stand-alone computers  and 
require the same data to be manually entered into and collected from diverse embedded systems.  
This represents a laborious task which becomes superfluous when computers are interconnected 
and able to automatically share and exchange information. The resulting networked environment 
would allow effective data exchange between embedded systems used to monitor and control the 
farm process and a centralized management server. 

The main goal is to ease the life of the farmer by avoiding worthless double entry of the same  
data and, if possible, by making specific sub-processes autonomous. For instance, if a pig dies and 
is  removed,  the  farmer  should  only  input  such piece  of  information  into  the  feeding computer  
located  in  the  pen.  Automatically,  the  change  should  reflect  on  a  farm  management  program 
behavior and eventually on a climate controller. Another example could relate to feeding computers 
able to transfer summations of feeding data to the farm management program. Moreover, event-
based asynchronous communication capabilities should be required to handle events and alarms in 
an effective way. 

These are generally triggered by devices not easily accessible by the farmer. In that case, the 
farmer would go to the place where the alarm was activated to get additional details, 
thus  loosing valuable  time that  could  be  used for  other  affairs.  Instead,  the  farmer 
should be able to monitor and handle alarms from any interactive device within the 
farm.
In order to support the expected interaction among the different components participating in the 
farm management process, reference data structures should be adopted. The  ISO 11788 [ISO, 
2000] standard could be a suitable solution: it  specifies an  Agricultural  Data Element Dictionary 
(ADED) consisting of  data structures that can be used to interchange information electronically  
between management systems and stationary computers in dairy, pig and poultry farming. 

ADED is closely linked to  Agricultural Data Interchange Syntax (ADIS), specified by  ISO 11787 
[ISO, 1996] standard and intended for non real time data communication.  ADED in combination 
with  ADIS makes electronic data  interchange possible.  In addition  to  ISO 11788 standard,  an 
extension  [TNM, 2009] has been developed within the  Datastandard project1 in order to include 
event and alarm data exchange in ADED-based farming systems.

1 http://www.datastandard.dk/
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3.2.1 The Agriculture Data Element Dictionary

Given a specific farm environment, the ADED is organized in areas, entities and data elements. For 
instance, the ADED for pig farming includes three main areas: area of pigs, area of feed and area  
of climate. For each area, the standard specifies entities intended as reference data structures  
which group basic data elements (items).

In  fact,  an  ADED  could  represent  a  specified  sub-set  of  a  larger  dictionary.  This  document 
subsection focuses only on a basic layout; however, the complete ADED including some proposals  
for extensions can be found in [ISO, 2000]. 

In an ADED, entities and items are univocally described and identified by a unique code composed 
of six digits. The international codes have “9” as the first digit; e.g. the ISO approved codes end  
up in this category. Digits 1 through 8 indicate whether a code is defined on national level and the  
digit 0 is reserved for internal communication on vendor level. More specifically, entities having a 
unique  code  beginning  with  “99”  are  already  approved  by  ISO,  whereas  entities  whose  code 
begins  with  “xx”  are  Draft  International  Standards still  to  be  endorsed  by  the  ISO  technical 
committee.  Similarly,  items  having  a  unique  code  beginning  with  “90”  are  approved  by  ISO,  
whereas items whose code begins with “xx” are still under approval.

Moreover, specific items in the ISO 11788 standard can be described by additional code sets. The 
code  set  can  be  either  normative or  informative.  A  normative  code  set  is  specified  in  an 
International Standard, while an informative code set only gives an example of possible values.

It is worth noting that a specific code set can be valid only at national level e.g. when there is an  
agreement  on  the  item  description,  but  the  value  of  the  code  set  differs  according  to  the  
considered country. The national code sets are listed in the national data dictionary.

The different types used to define the items are the following: datetime, int, char and double.

In fact, an entity can be compared to a class (C\#, Java), structure (C) or record (Pascal) in a 
programming language and contains a set of items which in turn is comparable to fields in a  
class/structure/record. For instance, a “Feed component” entity (struct) has items (fields) such as 
the “Dry matter content” and the “Feed component name”. 

In a database context, the entities could be seen as table specifications and the items as the 
columns  of  the  table.  This  close  correspondence  leads  to  a  web  service  API  with  features 
resembling simple SQL statements.

ADED entities

In [ISO, 2000],  the complete list  of  existing and proposed entities is  reported.  An example is 
shown in table 2. 

The “Feed component” in the ISO standard is described as an entity belonging to “area of feed” 
and whose unique code is 990012. The ”K" in the first column of the table specifies that the “Feed 
component number” field is a key (identifier) item that must be present in the entity. In general,  
the values of the key items uniquely identify an instance of an entity. In the provided example, 
“Feed component” is uniquely identified by the values of “Feed component number” and “Feed lot 
number”. The “M” in the first column indicates a mandatory item that is not part of the key and 
thus not necessarily  unique. Within a given entity,  the items not labelled with “M” or “K” are  
considered optional.

According  to  the  code  rule  reported  above,  Feed  component  is  an  internationally  recognized 
entity.  Moreover,  while  “Feed  lot  number”  item  has  been  already  approved  by  ISO,  the 
“Methionine per kilogram” item is still at proposal stage.
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99001
2 Feed component

Give information on the major characteristics of a feed component
(a feed component could be a mix of several feed)

O ADED-nr Name Type Unit
K 900099 Feed component number int Unique within farm
K 900100 Feed lot number int

900101 Feed type number int
900102 Feed component name char

M 900103 Dry matter content Double % of feed component
900104 Energy Type char
900105 Energy per kilogram Double MJ/kg
900106 Crude protein per kilogram Double g
900107 Phosphorus per kilogram Double g
900108 Calcium per kilogram Double g
900109 Lysine per kilogram Double g

Table 2. 990012 - Feed component.

3.2.2 Event and alarm data exchange 

While the ISO 11788 standard already covers several aspects of farm management, support for  
events and alarms is not included. In order to address this issue, the Datastandard project has 
proposed an extension  [TNM, 2009]  focused on event and alarm data exchange and relevant 
data structures in ADED-based farming systems. The main goal is to provide a communication  
pattern enabling the exchange of event and alarm data between farm process computers/embed-
ded systems and farm management software made available from different vendors. 
In the specification, data structures for events and alarms are proposed. 
More specifically, events are described by a set of parameters useful to univocally identify and de -
scribe the event occurred. Location and time information is included. Table 3. summarises the in-
formation specified for a given event notification.

 
906011 Event Notification

O DD Name Type
K 906001 Device Entity ID Int
K 990001 Location Entity String
M 906051 Event Vendor ID String
M 906052 Event ID Int

906053 Event Description String
906131 Creation Time Time
907132 Updated Time Time

Table 3. 906011 – Event notification.

On the other hand, alarms are indicated as particular events which need higher attention and that  
can be handled by human beings or specific management software. The description of an alarm 
should include the following information:

• Priority - this parameter is used to detail the level of importance of the alarm thus allow-
ing the definition of specific rules in handling the different incoming alarms. The proposed  
classification, ranging from non critical to critical (important) alarms, is shown below:

o Test and Debug (used for test and debugging purposes)

Document version: 1.0 Page 10 of 41 Submission date: 24.2.2011



EBBITS D7.2 Event and data structures, taxonomies and ontologies

o Info (referring to not critical events, still useful to properly monitor the status of  
the system)

o Warning (used for alarms that require immediate notification)
o Alarm (used for alarms that require to be managed in order to avoid additional  

problems)
o Fatal (used for the most critical alarms)

• Model - this parameter is used to describe the type of operations required to handle the  
various alarm states. The following alarm models are taken into account:

o Manual (alarms requiring human interaction)
o Automatic (alarms handled by automatic logic)
o Local (alarms requiring local reset)

• State  - this parameter relates to the different possible alarm states introduced to support 
the above handling schemes. Five states are defined:

o Normal (not active alarms)
o Silenced (alarms without abnormal process condition, still requiring acknowledge-

ment)
o Active (alarms denoting abnormal process condition)
o Suppressed  (active  alarms,  already  acknowledged but  not  yet  solved,  that  are 

shelved for a given amount of time)
o Disabled (alarms disabled)

The considered standard extension thus describes alarms by means of models which 
define the services that must be implemented depending on the current alarm state. 
The transitions between states are performed by the exchange of  messages  defined as  entities 
which contain  items with the relevant information. For instance, an important item described in 
the specification is the Alarm State whose value (integer type) contains the current state of 
the alarm.
The complete list of entities and items can be found in [TNM, 2009].

3.3 Data Structures used in Wireless Sensor Networks 

In  ebbits  project,  it  is  expected  that  monitoring,  control  and  optimization  of  processes  in 
manufacturing and food traceability scenarios are co-supported by the adoption of Wireless Sensor  
Network  (WSN)  technology.  In  fact,  WSN  represents  a  very  promising  technology  and  offers  
interesting characteristics in terms of flexibility, adaptability and efficiency. In addition, some of  
the  available  WSN  standards  already  provide  frameworks  dealing  with  event  management, 
application  logic  and  relevant  data  structures.  Nevertheless,  it  is  worth  mentioning  that  such  
technology is not meant to be included as part  of the automation  or farm networks but as a  
complement. Accordingly, the adoption of WSN technology would definitely simplify the integration 
of new features in already existing systems where the introduction of new elements could be a  
troublesome task. For instance, actual automation networks adopt customized protocols optimized 
for specific purposes and the addition of new devices would need to be carefully evaluated.

WSN technology  could  be  profitably  used  to  gather  energy  consumption  information,  possibly 
fused  with  other  relevant  data  made  available  to  ebbits  platform,  thus  enabling  event-based 
manufacturing process monitoring and optimization. This would allow to achieve one of the ebbits  
project objectives which is to introduce also the energy component in the computation  of  the 
Overall Equipment Efficiency (OEE) index, usually considered to measure the effectiveness of the 
production. 

The following subsections present data structures adopted in two standard solutions endorsed by  
the ZigBee Alliance called ZigBee Smart Energy 2.0 profile and the ZigBee Cluster Library. The 
ZigBee  Energy  2.0  profile  could  be  used  in  ebbits  project  to  support  energy  related  events 
management  i.e.  asynchronous  exchange  of  information  concerning  energy  monitoring  and 
control.  Finally,  the  ZigBee Cluster  Library  provides  a  list  of  data  structures  that  could  be  of  
interest  and  adapted  to  support  novel  application  level  features  (identified  from requirements 
analysis) in both the manufacturing and food traceability scenarios.
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3.3.1 ZigBee Smart Energy 2.0 Profile

Smart Energy Profile (SEP) 2.0  [SEP, 2010] is a joined standard being designed by the ZigBee 
Alliance and HomePlug Powerline Alliance.  The main objective is  to  provide a networking and  
application  layer  platform  supporting  the  interaction  between  customer  devices  and  energy 
services  providers.  Such  solution  would  also  promote  the  adoption  of  monitoring  and  control  
features to reduce global energy consumption. SEP 2.0 is intended to run on any network relying 
on IPv6 protocol. As far as WSN technologies are concerned, IEEE 802.15.4 has been taken into  
consideration jointly with the adoption of the IETF 6LoWPAN standard as the relevant adaptation  
layer.

SEP 2.0 basically adopts a web paradigm. A SEP 2.0 device can be considered as a server hosting 
specific application level capabilities exposed as web resources. The implementation of this web 
approach  actually  relies  on  a  HTTP-based  RESTful  architecture  where  the  application  level 
functionalities are exposed as Uniform Resource Identifiers (URIs). SEP 2.0 also proposes as an 
alternative solution to adopt the Constrained Application Protocol (CoAP), being defined within Core 
IETF WG. 

The data models used in SEP 2.0 are defined in the International Electro technical Commission’s  
(IEC) 61970-301 [IECa, 2009] and 61968-11 [IECb, 2009]. IEC 61970-301 is a semantic model in 
charge of describing the components of a power system at an electrical level and the relationships  
between components. IEC 61968-11 extends the previous model and specifically addresses data 
exchange between power systems focusing on functionalities like asset tracking, work scheduling 
and customer billing. These two standards are jointly known as the  Common Information Model 
(CIM) for power systems [IEC, 2007]. Their principal goal is to facilitate the exchange of energy 
related  information  among  companies  and  among  applications  operating  within  the  same 
company.

According to  the above CIM,  information  is  organized into  classes,  sub-classes and  attributes. 
Within a system, a class represents a specific type of object being modelled. Each class can have 
its own internal attributes and relationships with other classes. Actually, the relations among the  
classes  are  established  by  leveraging  on  object-oriented  methodologies  including  inheritance,  
aggregation,  association  and  composition,  thus  reflecting  the  hierarchical  structure  of  the 
modelled information.

In this context,  IEC 61968-9  [IECc,  2009] is also taken into account.  The standard defines the 
information content of a set of message types used for meter reading and control, meter events, 
customer data synchronization and costumer switching, thus supporting business functions related 
to  Advanced Metering Infrastructure (AMI).  While it  is  mainly  intended for  electrical  distribution 
networks, IEC 61968-9 can also be adopted for gas and water networks.

Moreover,  concepts  called  Function  Set and  Devices types have been introduced in SEP 2.0.  A 
function set provides a set of resources and associated transactions, while devices types are logical 
devices whose main capabilities are specified by particular function sets. For instance, the device 
type  “Meters”  is  expected  to  include  the  “Metering”  function  set  that  reflects  the  capability  of 
exchanging information about the meter read, meter status and tariff information. In the figure 2, 
the Metering object model is reported.

3.3.2 ZigBee Cluster Library

The ZigBee Cluster Library (ZCL)  [ZigBee, 2007] has been defined in the ZigBee specification in 
order to support data exchange at application layer. More specifically, ZCL provides a collection of  
pre-defined application messages, also called  clusters. Each cluster specifies the  attributes and 
commands defining  the  communication  interface  offered  by  a  specific  application  level  
functionality.

The attributes  are data  entities  associated  to  peculiar  application  level  features  exposed by  a  
ZigBee  device.  For  instance,  an  attribute  could  be  the  data  entity  containing  the  value  of  a 
temperature measurement performed by ZigBee-enabled thermometer or the status information of  
a ZigBee-enabled device, capable of being remotely controlled. 
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Figure 2. Metering Data Object Model [SEP, 2010].

The principal data types used to describe attributes in the ZCL are the following: General Data (8-
bit until 32-bit data), Logical (Boolean), Bitmap (8-bit until 32-bit bitmap), Enumeration (8-bit and 
16-bit), Integer (Unsigned and Signed), Floating Point (Semi, Single and Double precision), String 
(Octet  and  character  String),  Time (Time  of  day  and  date),  Identifier (16-bit  or  32-bit)  and 
Miscellaneous (64-bit).

Attributes can be also grouped into sets. Then, commands can be used to read/modify the value 
of the attributes, to perform a discovery of the attributes exposed within a cluster and even to  
receive asynchronous notifications of some attribute-related events (e.g. in case, the temperature 
change exceeds a certain threshold).

As an example, a brief description of Basic cluster is provided. It defines attributes and commands 
needed to retrieve or set basic information about a device and to enable or reset the  device to 
factory configuration. The cluster is organized into two attribute sets: Basic Device Information and 
Basic  Device  Settings.  The  attributes  contained  in  the  first  set  include  ZCLVersion,  
ApplicationVersion,  StackVersion,  HWVersion,  ManufacturerName,  ModelIdentifier,  DateCode,  
PowerSource,  LocationDescription,  PhysicalEnvironment,  DeviceEnabled  and  AlarmMask.  It  is 
worth noting that this cluster has similar characteristics to the identity object described in CIP.

Within ZigBee standard, the clusters are actually used to define a device in terms of mandatory and 
optional offered capabilities. Devices belonging to the same application area are then grouped in  
Application profiles. 

Home Automation profile  [ZigBee, 2010] defines specific devices that could be of interest for the 
ebbits project and that relate to the following application areas: lighting, heating, Ventilating and Air 
Conditioning  (HVAC),  environmental  monitoring,  energy  management,  safety,  and  security.  For 
instance, among the HVAC devices,  the temperature sensor is  defined. The table  4 shows the 
clusters required for the device.
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Server Side Client Side
Mandatory

Temperature Measurement None
Optional

None Groups

Table 4. Clusters supported by the Temperature Sensor device [ZigBee, 2010]

The  Temperature Measurement cluster  has one attribute set called  Temperature Measurement  
Information containing the attributes presented in table 5.

Attributes of the Temperature Measurement Information Attribute Set
Name Type Mandatory/Optional

MeasuredValue Signed 16-bit Integer M
MinMeasuredValue Signed 16-bit Integer M
MaxMeasuredValue Signed 16-bit Integer M

Tolerance Unsigned 16-bit Integer O

Table 5. Attributes of the Temperature Measurement Information attribute set [ZigBee, 2007].
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4. Publisher / subscriber architectures

The  publish/subscribe  schema  provides  two  principal  players,  the  publisher  (the  information 
producer) and the subscriber (the information consumer). The publisher entity publishes the events 
on a software bus (or event channel), while the subscriber expresses his/her interest in a specific 
part  of  information  (an  event  or  in  a  pattern  of  events),  submitting  related  subscription.  The 
subscriber is notified when the submitted subscription matches an occurred event or a pattern of 
events. This communication model, schematically depicted in figure 3, provides simple and efficient 
methods  for  distributing  information  and  guarantees  decoupling  in  terms  of  time,  space  and 
synchronization, between publisher and subscriber [Eugster et al, 2003] [Etzion 2011])

Figure 3. Publisher-subscriber architecture schema.

Large variety of emerging applications benefit from the expressiveness, filtering, distributed event 
correlation, and complex event processing capabilities of content-based publish/subscribe systems. 
These applications include RSS feed filtering, stock market monitoring engines, system and network 
management and monitoring, algorithmic trading with complex event processing, business process 
management  and  execution,  business  activity  monitoring,  workflow  management  and  service 
discovery [Jacobsen et al, 2009].

An example of an open source distributed content-based publish/subscribe system is Padres [Padres, 
2011],  [Jacobsen  et  al,  2010],  [Jacobsen  et  al,  2009]  developed  by  the  Middleware  Systems 
Research Group at the University of Toronto. Content-based routing is enabled in cyclic overlays. 
Cyclic  overlays  provide  redundancy  in  routes  between  sources  and  sinks  and  thus  produce 
alternative  paths  between  them.  PADRES  also  implements  other  efficient  load  balancing  and 
recovery algorithms to handle load imbalances and broker failures. The PADRES publish/subscribe 
broker  is  based  on  a  content-based  matching  engine  that  supports  the  subscription  language, 
including atomic subscriptions, the various forms of historic subscriptions, composite subscriptions 
with  conjunctive  and disjunctive  operators,  the  isPresent  operator,  variable  bindings,  and event 
correlation with different consumption policies. PADRES includes a number of tools to help manage 
and administer a large publish/subscribe network, e.g. a monitor that allows a user to visualize and 
interact with brokers in real time, and a deployment tool that simplifies the provisioning of large 
broker networks.

 Another interesting framework was created in context the Internet of Things (IoT) research effort – 
MAGIC Broker 2 (MB2) developed at the Media and Graphics Interdisciplinary Centre, University of 
British Columbia [Blackstock et al 2010]. MB2 middleware platform offers a simple, uniform web-
based  API  for  building  IoT  applications  and  offers  developers  three  built-in  programming 
abstractions:  publish-subscribe event channels, persistent content and state storage, and brokerage 
of services via remote-procedure call. MB2 system was used to create a range of IoT applications 
involving spontaneous device interaction such as between mobile phones and public displays, and 
opportunistic or shared sensing and control of devices using a web-based sensor actuator network 
called  Sense  Tecnic  (STS).  The  STS  platform  also  includes  facilities  to  process  sensor  data, 
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effectively  creating  higher-level  sensors.  A  complex  event-processing  engine  [Esper]  is  used  to 
process lower-level sensor events, which are sent back into MB2 for output to higher-level derived 
sensor feeds that can be used by applications and visuals.

The mentioned system Esper [Esper] is an Event Stream Processing (ESP) and event correlation 
engine  (CEP,  Complex  Event  Processing)  –  i.e.  it  supports  requirement  to  process  events  (or 
messages) in real-time or near real-time. Targeted to real-time Event Driven Architectures (EDA), 
Esper is capable of triggering custom actions written as Plain Old Java Objects (POJO) when event  
conditions  occur  among event  streams.  It  is  designed for  high-volume event  correlation  where 
millions of events coming in would make it impossible to store them all to later query them using 
classical database architecture.

Generic Event Architecture GEAR [Casimiro et al 2007] is an architecture to provide the possibility of  
integration of physical and computer information flows in large distributed systems interacting with 
the physical environment and being composed from a huge number of smart components - systems-
of-embedded-systems.  GEAR utilises COoperating Smart devices (COSMIC) middleware [Kaiser et al 
2005] as an appropriate event model. It allows specifying events with attributes to express spatial 
and temporal properties. This is complemented by the notion of Event Channels (EC), which are 
abstractions  of  the  underlying  network  and  enforce  the  respective  quality  attributes  of  event 
dissemination. Event channels reserve the needed computational and network resources for highly 
predictable event systems. The COSMIC middleware, maps the channel properties to lower level 
protocols of the regular network and defines an abstract network which provides hard, soft and non 
real-time message classes.

Finally, the Hydra middleware, also implements a publish and subscribe event management solution. 
Event  channels  are  modelled  by  a  “Topics”  structuring  sets  of  events.  Event  producers  and 
consumers can then publish and subscribe to these topics. The producers and consumers of events 
are loosely coupled and topics/event types can be chosen at will.  

Document version: 1.0 Page 16 of 41 Submission date: 24.2.2011



EBBITS D7.2 Event and data structures, taxonomies and ontologies

5. Semantic technologies for event management

This section aims to provide the state of the art in the area of semantic technologies directly related 
to the modelling of the events produced by devices. The section is divided into two parts: overview 
of  existing  semantic  models  of  sensors  and  the  technologies  for  mapping  between  relational  
databases and ontologies.

The events related to the devices are mostly part of existing ontologies for modelling the sensors. 
Many times, the concepts, which correspond to the concept of event in ebbits are modelled as the 
observations or measurements made by the sensors. Therefore the overview of sensor ontologies is 
provided, but with the focus on modelling of events, or concepts corresponding to the understanding 
the event concept in ebbits. The analysis of existing ontologies modelling the events will serve as the 
basis for the identification of relevant parts of events and the design of the ebbits preliminary event 
model. There are also a lot of existing semantic models for higher level events, such as calendar 
events (meeting scheduled on concrete time to concrete room with concrete participants) or domain 
dependent events, e.g. system statuses (plant has passed the functionality tests). These higher level 
events are also planned to be part of the ebbits eventing architecture, but they are out of scope of  
this deliverable. The semantic models of higher-level events are planned to be created in WP3 or  
WP6.

As the data produced by device events and the events themselves will be stored for the purpose of  
further usage (e.g. historic data analysis), there is a need to enrich the model of events with the  
semantic information representing: what data were produced by which event generated by which 
device, where and how are those data stored. There is an assumption, that data produced by events  
(and the events themselves) will  be stored in relational databases (also for the reason, that the 
semantic storages are not suitable to persist a lot of raw data). Following this assumption, there is a 
need to create semantic support for integrating the semantic data with existing database storages 
(in some cases not only for storing the events related data). For this reason, an overview of existing 
technologies for mapping between ontologies and relational databases is provided.

5.1 Semantic models of sensors

5.1.1 SensorML

SensorML [SensorML, 2007] is part of an Open Geospatial Consortium (OGC) initiative to contribute 
to the development of a Sensor Web through which applications and services will be able to access 
sensors of all types over the Web and was approved by OGC as an international, open Technical  
Specification  on June  23,  2007.  SensorML provides  standard  models  and  an  XML encoding  for 
describing the processes,  including the process of measurement by sensors  and instructions for 
deriving higher-level information from observations. Processes are discoverable and executable. All 
processes  define  their  inputs,  outputs,  parameters,  and  method,  as  well  as  provide  relevant 
metadata. Models detectors and sensors as processes that convert real phenomena to data.

Sensor systems or processes can make themselves known and discoverable. SensorML provides a 
rich  collection  of  metadata  that  can  be  mined  and  used  for  discovery  of  sensor  systems  and 
observation processes. This metadata includes identifiers, classifiers, constraints (time, legal, and 
security),  capabilities,  characteristics,  contacts,  and  references,  in  addition  to  inputs,  outputs, 
parameters,  and  system location.  Complete  and  unambiguous  description  of  the  lineage  of  an 
observation is also provided.  

Process  chains  for  geolocation  or  higher-level  processing  of  observations  can  be  described  in 
SensorML,  discovered  and  distributed  over  the  web,  and  executed  on-demand  without  a  priori 
knowledge of the sensor or processor characteristics. This was the original driver for SensorML, as a 
means of countering the proliferation of disparate, stovepipe systems for processing sensor data 
within various sensor communities. This processing is enabled without the need for sensor-specific 
software. 
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SensorML descriptions of sensor systems or simulations can be mined in support of establishing OGC 
Sensor  Observation  Services  (SOS),  Sensor  Planning  Services  (SPS),  and  Sensor  Alert  Services 
(SAS). SensorML defines and builds on common data definitions that are used throughout the OGC 
Sensor Web Enablement (SWE) framework. 

SensorML  enables  the  development  of  plug-n-play  sensors,  simulations,  and  processes,  which 
seamlessly be added to Decision Support systems. The self-describing characteristic of SensorML-
enabled sensors and processes also supports the development of auto-configuring sensor networks, 
as well as the development of autonomous sensor networks in which sensors can publish alerts and 
tasks to which other sensors can subscribe and react. 

Finally,  SensorML provides a mechanism for  archiving fundamental  parameters  and assumptions 
regarding sensors and processes, so that observations from these systems can still be reprocessed 
and improved long after the original mission has ended. This is proving to be critical for long term 
applications such as global change monitoring and modeling. 

The  essential  elements  include:  components,  systems,  process  models,  chains  and  methods, 
detectors and sensors.

SensorML is  currently  encoded in XML Schema. However,  the models  and encoding pattern for 
SensorML follow Semantic Web concepts of Object-Association-Object. Therefore, SensorML models 
could easily be encoded for the Semantic Web. In addition, SensorML makes extensive use of soft-
typing and linking to online dictionaries for definition of parameters and terms. 

Figure 4. The part of OntoSensor ontology.

5.1.2 OntoSensor

OntoSensor [OntoSensor, 2005][OntoSensor, 2006] is a Semantic Web compatible ontology, which 
references and extends the IEEE Suggested Upper Merged Ontology (SUMO) [SUMO, 2001], which 
defines general concepts and associations. OntoSensor is based in parts upon SensorML [SensorML, 
2007], which defines associations and properties common to sensors. OntoSensor deviates from 
SensorML since it lacks the semantic richness, such e.g. by axiomatically defined terms, which may 
be required for automated data fusion and inference in a distributed sensing environment. Currently, 
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OntoSensor  includes  knowledge  models  for  the  data  acquisition  boards,  sensing  elements,  and 
processor/radio units, as well as preliminary definitions of a variety of imaging sensors. OntoSensor 
contains a hierarchy of sensor classes and describes sensor attributes, capabilities, and services. 
OntoSensor concepts and associations are instantiated in distributed repositories and updated by the 
base  stations  of  the  network.  The data  model  for  a  given sensor  contains  meta  data  such as 
sensitivity,  performance  range,  and  accuracy  for  the  sensing  elements,  as  well  as  physical  
characteristics such as weight, radio frequencies, dimensions, and power supply information for the 
platform.

Figure 5. Improvement of OntoSensor ontology.

The objective of OntoSensor design was to faithfully replicate the concept hierarchy of SensorML in 
OWL. Some implementation compromises and workarounds needed to be made during the creation 
of ontology due to the dependency of certain SensorML terms on concepts from the Geographic 
Markup Language (GML) [GML, 2004].

Figure 6. The part of SDO ontology.
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OntoSensor  extends  the  IEEE  SUMO  upper-level  ontology   [SUMO,  2001]  by  making  some 
OntoSensor classes extensions of classes defined in SUMO. Furthermore, the SensorML specification 
references some concepts that are defined in ISO 19115. The ISO 19115 standard defines schema 
required  for  geographic  information  and  services.  Both  the  SUMO  and  ISO  19115  have  OWL 
implementations  that  are  referenced by  OntoSensor.  Figure  4  shows an  aspect  of  the  concept 
hierarchy  of  the  OntoSensor  ontology  which  includes  formal  definitions  of  SensorML  concepts, 
extends IEEE SUMO and uses concepts from ISO 19115 in some of its relations.  The OntoSensor  
ontology also contains the hierarchy of sensor devices. Generally, OntoSensor can be viewed as a 
middle-level  ontology that  extends the concepts  from a high-level  ontology (SUMO) and whose 
concepts can be used by more specialized ontologies that model specific domain sensors. 

Certain  SensorML  concepts  pertaining  to  the  location  model  of  sensors,  coordinate  reference 
systems and transformation procedures are dependent upon concepts from the Geographic Markup 
Language (GML). These SensorML concepts are necessary for specifying the location of sensors and 
sensor  observations  and  to  perform spatial  transformations  to  relate  these  to  the  location  and 
reference  systems  of  other  sensors,  platforms  and  central  monitoring  and  processing  systems. 
Implementation of this dependency upon GML was suggested by referencing the OWL ontology with 
formal definitions of GML concepts created by [Defne, 2004].

The OntoSensor ontology was adopted as the basis for the design of the sensor ontology enabling 
service-oriented services in future computing [Kim, 2008]. The ontology design focuses the service-
oriented interpretation of data sensed by the sensor. The main sources for collecting commonly used 
terms  in  the  service  domain  were  GML,  SensorML,  SUMO  and  OntoSensor.  The  novel  sensor 
ontology  was  extended  by  the  ServiceProperty,  LocationProperty  and  PhysicalProperty  classes 
representing  the  service-oriented  properties.  The  meaning  of  the  service-oriented  property  is 
sensing data, which is a difference to sensor data. The ontology is shown in figure 5.

5.1.3 Sensor Data Ontology (SDO)

The proposed universal SDO ontology comprises four components: the SUMO ontology, the Sensor 
Hierarchy Ontology (SHO), the Sensor Data Ontology (SDO), and the Extension Plug-in Ontologies 
(EPO) [Eid, 2006][Eid, 2007].The SHO and SDO ontologies reference and extend the SUMO ontology 
to  facilitate  automatic  data  fusion  and  inference  in  distributed  and  heterogeneous  sensing 
environments.

The  sensor  hierarchy  ontology  includes  knowledge  models  for  the  transducer  (sensors  and 
actuators) elements, data acquisition units, and data processing and transmitting units. It contains a 
hierarchy of transducer classes and describes its attributes and capabilities. The data model for a 
given transducer contains meta-data such as the measurement and/or output range, accuracy and 
type, as well as physical properties and calibration methods. A snapshot of the implementation of 
the transducer SHO is shown in figure 6. 

The goal of the sensor data ontology is to describe the dynamic and observational properties of  
transducer  data  that  goes  beyond just  describing  individual  transducers.  The ontological  model 
describes the context of a sensor with respect to spatial and/or temporal observations. Furthermore, 
the SDO utilizes the notion of virtual transducer as a group of physical ones to provide abstract 
measurements/operations. For instance, a temperature sensor, a humidity sensor, and a wind speed 
sensor may collectively monitor weather as weather sensors. 

To extend the capabilities and behavior of the proposed universal ontology, the Extension Plug-ins 
Ontologies allow to integrate domain-specific ontologies with the universal ontology. Each plug-in 
ontology should implement the knowledge representation for a particular domain of sensor data and 
networks and establish the connection with the SUMO ontology. This enables interoperability and 
knowledge sharing among sub-ontologies in the ontology architecture.
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5.1.4 Coastal Environmental Sensor Networks (CESN) Ontology 

The  purpose  of  the  CESN ontology  is  to  describe  the  relationships  between  sensors  and  their  
measurements. The main concepts found in the CESN sensor ontology are similar to the terminology 
described in SensorML [SensorML, 2007] and to some of those emerging in the Marine Metadata 
Interoperability device ontology project [MMI, 2009], and CSIRO Sensor Ontology [CSIRO, 2009a]. 
The core concepts in the CESN sensor ontology are the physical sensor devices themselves, Sensor; 
the PhysicalProperty that a Sensor can measure; and the measurement that a sensor has taken, 
PhysicalPropertyMeasurement, see figure 7. Not shown are important constraints, expressed in OWL, 
on this core. For example, a Sensor object can measure only one physical property. Objects that can  
contain Sensors and so measure more than one physical property are modeled by a class named 
Instrument. In turn, an instrument is usually deployed on some kind of Platform, which typically 
constrains its relationship to the environment in which it is deployed. Also not shown is the class 
Deployment, which represents the deployment of an instrument at a particular time and place, 

Figure 7. The core of CESN ontology.

and so can be used to relate instrument readings to expected or unexpected events putatively 
signaled by the data modeled by the ontology.  Deployment attributes of individual instruments are 
particularly important in the real world of movable instruments.

5.1.5 Agent-based Middleware for MME (A3ME) Ontology

A3ME ontology specifies the rich classification of mixed mode environments (MME - environments 
with different dimensions of heterogeneity: heterogeneous devices, heterogeneous software, and 
heterogeneous  communication  technologies)  [A3ME,  2008][A3ME,  2009].  The  different  kinds  of 
devices were classified to allow mapping of a specific devices to a general class of devices with 
common  characteristics.  Also,  the  different  capabilities  were  classified  into  groups  of  related 
capabilities,  e.g.  sensing  capabilities,  actuator  capabilities,  etc.  These  can  than  be  further  sub 
classified into more specific subtypes.  The basic classification deals with different aspects needed to 
be classified in MME. Those are IDs, devices, capabilities, services, data, properties and other. Some 
of the concepts, such as devices, are further subclassified. The part of classification is shown in 
figure 8.
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Figure 8. Part of A3ME classification.

5.1.6 Ontonym

Ontonym  is  the  set  of  ontologies  modelling  the  concepts  of  pervasive  computing  including 
uncertainty,  provenance,  sensing  and  temporal  properties.  Ontonym  contains  the  ontologies 
describing devices, sensing, locations, people, provenance, events and time. 

Ontonym’s  sensing  ontology  is  concerned  with  the  description  of  sensors  and  the  data  they 
generate. The characteristics and uncertainty of sensed data are represented by four properties: 
frequency, coverage, and a set of accuracy and precision pairs. Frequency is defined as the sample 
rate – how often the sensed data is updated. Coverage is defined as the amount of the potentially 
sensed context about which information is delivered. Precision defines a value range and accuracy is 
the percentage of how often the precision is achieved. Precision and accuracy can have  different 
semantics depending on the sensor under consideration. Sensors may specify as many precision and 
accuracy pairs as required. Each sensor reading includes observation-specific information, meta-data 
characterising the observation, a reference to the sensor that generated the reading, a timestamp 
indicating  when  the  observation  was  made,  and  more.  The  data  associated  with  a  reading  is 
considered to be the union of the observation and sensor properties, with the observation properties 
taking  precedence.  This  allows static  properties  of  an  observation  to  be  specified as  part  of  a 
sensor’s properties. 

The provenance ontology in Ontonym models three things: the creator or author of data, the time 
the data has been created or modified, and the source from which new data has been derived.  

The  event  ontology  provides  a  means  of  describing  activities  that  have  (at  least)  a  temporal  
dimension and can be associated with the location.  The event ontology also models roles that are 
played by entities in the activity, and the properties to associate an entity (person, device, etc.) with 
an event. All of these concepts are designed for extension to describe domain-specific events. 
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Figure 9. Part of CSIRO ontology.

5.1.7 CSIRO Sensor Ontology

CSIRO OWL ontology [CSIRO, 2009a][CSIRO, 2009b] was created as the basis for the semantic 
representation  of  sensors  and  as  the  formal  description  for  reasoning  about  sensors  and 
observations. While semantics can assist in searching for existing sensors, the CSIRO ontology was 
used to realize a more advanced task of automatic composition of a sensor satisfying a query if no  
such sensor exists. Once composed, such a sensor should be available as a sensor in its own right, 
and available to be used as a component of new virtual sensors. For example, a query such as 
“report event E each time condition C is reached in time period P ”, requires finding or composing a  
sensor that can detect C, finding or making a process that builds an E from a C and understanding  
the constraints in availability, power, and eventual degradation of the sensors over P.

The ontology is built around the central notion of a sensor, and three important clusters of concepts 
referenced by the sensor: domain concepts, abstract sensor properties and concrete properties. The 
abstract properties specify sensors’ functions and capabilities. The concrete properties ground the 
abstract  by  providing,  for  example,  the  interface  details  to  the  functions.  It  is  essentially  the 
difference between specifying the properties of a sorting algorithm and giving a path to a binary.  
Separating concrete and abstract aspects of sensors means that descriptions of types of sensors, 
functions and the like can be shared among specifications and also that a single sensor type can 
have multiple concrete descriptions, promoting reuse and allowing for differences in deployment. 
The domain ontology is left unspecified, any external domain ontology can be referenced. 

Each concrete sensor has the sensor grounding models representing the concrete realisation of a 
sensor.  The  grounding  represents,  in  the  case  of  an  instrument,  its  physical  implementation, 
including size, shape, materials and location. The grounding also models the concrete aspects of  
accessing data from the sensor, including the types and expected formats of input when calling 
functions, the format of output and other details for accessing the sensor (radio, network or physical 
access, for example). 

In  general,  each  sensor  may  have  any  number  of  operation  models  describing  the  operations 
(functions) of the sensor, how the measurements are made and properties of the measurements. A 
response model represents a sensor's responses to stimuli under various conditions. Each operation 
model may have a number of results that specify properties such as the function that the operation  
computes (its effect), accuracy and latency under various conditions.

The core part of the ontology is shown in figure 9.
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Figure 10. Part of Sensei ontology.

5.1.8 Sensei Observation and Measurement Ontology

The Sensei ontology [Sensei, 2009a][Sensei, 2009b] provides an ontology based approach to the 
structuring of data obtained from different types of sensors. Most of the current work on providing 
semantic data for sensor networks is focused on using semantic description for sensor nodes and 
elements which support advanced analytics and situation and context awareness in sensor networks. 
Creating a semantic sensor data model for sensor data related to measurements and observations is 
another important aspect in designing highly scalable and advanced heterogeneous sensor network 
applications.  This  should  also support  creating advanced  data  mining and knowledge extraction 
methods for real-time or archived sensor data. The Sensei ontology proposes a framework for a 
semantic data description model which provides interoperability and facilitates deriving additional 
knowledge from real-time and/or stored sensor data. The semantic data model in collaboration with 
a semantic sensor network architecture  should support designing smart applications using sensor 
networks. A part of the Sensei ontology is illustrated in figure 10.  

In [Sensei, 2009b] it is assumed, that observed and measured information will be transmited by the 
sensors in the semantic format. At first sight, it seems that the represented data in OWL form adds 
some  complexity  to  the  data  representation  structure  and  the  extra  information  needs  to  be 
transmitted by the sensor nodes. Considering the fact that sensors nodes have limited processing 
and memory capabilities, the data representation could appear as a bottleneck to the design. To 
address this  issue, the assumption is, that  each sensor node will  utilise  a gateway or a similar 
solution to wrap the observation data in the particular data type which is measured by the sensor  
without requiring to be aware of the whole ontology structure. This means, that essentially the 
measurement and observation data from a sensor node will be in a format which complies with the 
Sensei ontology. 

The data analysis and using ontology-based reasoning to extract additional knowledge from the data 
will only occur in processing nodes which have more powerful processing capabilities. The major 
cost of using the proposed method will be an increase in volume of the transmitted data from the 
sensor node. 

5.1.9 Semantic Sensor Network (SSN) Ontology

The   W3C Semantic  Sensor  Network  Incubator  Group provides  a  formal  OWL DL  ontology  for 
modelling sensor devices (and their capabilities), systems and processes [SSN, 2010]. The ontology 
is based around concepts of systems, processes, and observations. It supports the description of the 
physical  and  processing  structure  of  sensors.  Sensors  are  not  constrained  to  physical  sensing 
devices.  Rather  than  that,  a  sensor  is  anything  that  can  estimate  or  calculate  the  value  of  a  
phenomenon, so a device or computational process or combination could play the role of a sensor.  
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The  representation  of  a  sensor  in  the  ontology  links  together  what  it  measures  (the  domain 
phenomena), the physical sensor (the device) and its functions and processing (the models). 

Figure 11. Architecture of SSN ontology.

In general, the sensors observe the stimuli to infer information about environmental properties and 
construct features of interest. The sensors themselves may have particular properties, such as an 
accuracy in certain conditions, or may be deployed to observe a particular feature, and thus the 
whole SSN ontology unfolds around this central pattern, which at its heart relates what a sensor 
detects  to  what  it  observes.  The  SSN  ontology  revolves  around  the  central  Stimulus-Sensor-
Observation pattern, which acts as the upper core-level of the Semantic Sensor Network ontology. 
While the pattern is an integral part of the SSN ontology, it is also indented to be used separately as 
a common design pattern for all kind of sensor or observation based ontologies and vocabularies for 
the  Semantic  Sensor  Web  and  especially  Linked  Data.  The  pattern  is  developed  following  the 
principle of minimal ontological commitments to make it reusable for a variety of application areas. 
To ease the interpretation of the used primitives, to boost ontology alignment and matching as well 
as to facilitate reuse and interoperability,  the pattern is aligned to the ultra light version of the 
DOLCE foundational ontology [DUL, 2007].  

Several  conceptual  modules  build  on the  pattern  to  cover  key  sensor  concepts,  such as:  basic 
skeleton, devices,  measuring capabilities  and constraints,  energy consumption, data,  processess, 
operating restrictios, platforms, deployment and systems containing the sensors. The ontology does 
not  include  a  hierarchy of  sensor  types;  these  definitions  are  left  for  domain  experts,  and  for 
example could be a simple hierarchy or a more complex set of definitions based on the workings of 
the sensors. The modules contain the classes and properties that can be used to represent particular 
aspects of a sensor or its observations: for example, sensors, observations, features of interest, the 
process of sensing (i.e: how a sensor operates and observes), how sensors are deployed or attached 
to platforms, the measuring capabilities of sensors, as well  as their environmental,  and survival 
properties of sensors in particular environments. The overview of general SSN ontology structure is  
illustrated in figure 11.
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5.2 Mapping between the relational databases and ontologies

5.2.1 Mapping approaches

Approaches to mapping between RDB and ontologies can be generally divided into the two basic 
categories: automatic mapping generation, vs. creation of domain specific mapping.

Many automatic mapping generation systems realise the automatic generation of mappings with the 
RDB table as a RDF or OWL class node and the RDB column names as RDF predicates [Virtuoso, 
2007][D2RQ, 2007][SquirrelRDF, 2007]. Automatically  generated mappings are often not able to 
capture the complex domain semantics that are required by many applcations, these mappings serve 
as a useful starting point to create more customized, domain-specific mappings. Even thought, there 
exist also approaches using existing domain ontologies as the basis for an automatic creation of the 
simple  mappings.  The  simple  mappings  are  checked  for  consistency  and  subsequently  more 
contextual mappings are constructed [Hu, 2007].

Creation of domain specific mappings is often implicit or does not have to be captured at all in a RDB 
schema. Domain specific mappings often take advantage of existing domain models and lead to a 
drastic reduction of mapped triples, taking into account only relevant information contained in the 
domain model [Byrne, 2008]. Domain mapping is often realized as the process of domain ontology 
population,  where  data  from  a  RDB  is  transformed  into  the  instances  of  a  particular  domain 
ontology. Also many existing mapping tools, such as [D2RQ, 2007], allow users to define custom 
mapping rules in addition to automatically generated rules.

5.2.2 Mapping tools

D2RQ

The D2RQ [D2RQ, 2007] platform uses mapping to enable applications to access a RDF-view on a 
non-RDF database through the Jena and Sesame APIs, as well as over the Web via the SPARQL 
protocol and as Linked Data. The D2RQ consists of  the D2RQ Mapping Language, a declarative 
mapping language for describing the relation between an ontology and an relational data model, the 
D2RQ Engine, a plug-in for the Jena and Sesame Semantic Web toolkits, which uses the mappings 
to rewrite Jena and Sesame API calls to SQL queries against the database and passes query results 
up to the higher layers of the frameworks and D2R Server. A HTTP server that can be used to 
provide a Linked Data view, a HTML view for debugging and a SPARQL protocol endpoint over the 
database. The mappings may be manually defined by the user, which allows the incorporation of 
domain semantics in the mapping process.

Virtuoso RDF View

The Virtuoso RDF View [Virtuoso, 2007] uses the “Table as RDFS Class and Column as Predicate” 
approach and takes into consideration special cases such as whether a column is part of the primary  
key  or  foreign  key.  The  foreign  key  relationship  between  tables  is  made  explicit  between  the 
relevant  classes  representing  the  tables.  The  RDB data  are  represented  as  virtual  RDF graphs 
without physical creation of the RDF datasets. The Virtuoso RDF views are composed of quad map 
patterns that define the mapping from a set of RDB columns to triples. The quad map pattern is 
represented in the Virtuoso meta-schema language, which also supports SPARQL-style notations.

Triplify

Triplify [Auer, 2009] is a small plug-in for Web applications, which reveals the semantic structures 
encoded in relational databases by making database content available as RDF, JSON or Linked Data. 
It is based on the definition of relational database queries for a specific Web application. Triplify also  
demonstrates that a tool connecting a relational database to the world of semantics can be very 
lightweight. The approach does not support SPARQL, but it includes a method for publishing update 
logs to enable incremental crawling of linked data sources. Triplify is complemented by a library of 
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configurations for common relational schemata and a REST-enabled datasource registry. Despite its 
lightweight architecture Triplify is usable to publish very large datasets.

Datagrid

Dartgrid Semantic Web toolkit [Datagrid, 2006] provides the tools for the mapping and querying of 
RDF generated from RDB. The mapping is basically a manual table to class mappings where the user 
is provided with a visual tool to define the mappings. The mappings are then stored and used for the 
conversion. The construction of SPARQL queries is assisted by the visual tool and the queries are 
translated  to  SQL queries  based on the  previously  defined  mappings.  A  full-text  search  is  also 
provided. 

R2O

R2O [R2O, 2006] is  a  XML based declarative  language to  express  the  mappings  between RDB 
elements and an ontology. R2O mappings can be used to "detect inconsistencies and ambiguities" in 
mapping  definitions.  The  ODEMapster  engine  uses  a  R2O  document  to  either  execute  the 
transformation in response to a query or in a batch mode to crate a RDF dump. 
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6. Prototype of event management support ontology

The  ebbits  platform  aims  to  support  interoperable  business  applications  with  context-aware 
processing of data separated in time and space,  information and real-world events (addressing 
tags, sensor and actuators as services), people and workflows (operator and maintenance  crews), 
optimisation  using  high  level  business  rules  (energy  or  cost  performance  criteria).  The  key 
requirements  for  the  business  rules  execution  is  that  the  ebbits  platform  needs  to  be  able  to 
recognise  and  respond  to   physical  world  events.  The  information  acquired  from  events  from 
physical  world generated by various devices create the basis for decision making at the several 
levels of the ebbits architecture, including basically:

• data fusion,

• situation patterns recognition,

• complex event processing,

• analysis of historical acquired data,

• and possibly more ..

All of above mentioned requirements needs to work with the large amount of information related to 
the devices generating the events or providing the services for further processing by event/service 
orchestration, decission or business rules. In some cases it must be possible to use this information 
to analyse the historical data generated by particular events. 

As the description of devices, their services and events may change in time following the growing 
and changing requirements, the semantic  model is  the very flexible way, how to represent and 
query  all  the  relevant  information.  For  more,  there  already  are  existing  models  defining  the 
properties of devices, services and events, which may be reused or adopted in a very flexible way,  
when using semantic technologies as the knowledge representation method. 

Semantic knowledge representation may be realised using various languages and notations. To keep 
the semantic model as simple as possible and to be able to response to the queries in the real time,  
the good practice is to use the most simple language as possible, of course, with respect to the  
requirements on the knowledge represented. The OWL language [OWL, 2009] was selected as the 
knowledge representation technology, more precisely, the most simple dialect of OWL depending on 
the semantic engine (some semantic triplestores implement even more reduced expresivity of OWL, 
e.g. BigOWLIM enables to use OWL-Horst [BigOWLIM, 2010]). In the most cases it is possible to use 
the OWL-Lite dialect, which is recommended (until some higher expresiveness of the language is 
required).

All relevant models in ebbits are planned to be build upon the existing Hydra project ontologies 
(name changed from the HYDRA project)  [HYDRA, 2010],  which contain the rich description of 
devices, services and their various properties and capabilities,  partly including the description of 
events. Based on the analysis of the state of the art in the area of existing sensor models, event-
management systems and database – ontology mapping techniques, the Hydra ontologies have to 
be extended and aligned with the requirements on the scenarios of ontology usage. In the next 
section the requierements on the ontology usage will be outlined, the Hydra ontology will be briefly 
introduced and the relevant models of device, service and event will be focused and analysed. The 
Hydra ontology  extensions  based on the state  of  the art  will  be  proposed and the preliminary 
semantic model will be designed.

6.1 Requirements on the ontology usage

The primary role of the semantic model is to answer the questions according to the semantics of the  
stored knolwedge. So, the main goal of the ontology design is to find and define the effective way of 
the knowledge representation. In the context of the workpackage, the main focus here is to design 
the effective representation of knowledge about the events and services provided by the various 
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devices. The necessary point, where to start, is the definition of meaning of the basic terms used in  
the scope of this deliverable: 

• Service – is the functionality provided by the device, which must be proactively called by the 
agent using this service (e.g. getTemperature service of Thermometer sensor; agent may be 
the software using the service or the person)

• Event – is the functionality provided by the device, which autonomously publishes some data 
to some working environment (depending on the used event-management technology). This 
data is  acquired from the environment (e.g.  measurement data from sensor).  The data 
acquisition is triggered by the occurence of some environment observation (e.g. the door 
lock sensor publishes the „door was closed“ notification event, when this situation happens), 
or the data acquisition continually happens according to the defined frequency (temperature 
sensor publishes the measured temperature value each 5 seconds).  In some cases,  the 
functionality  provided  by  the  event  may  be  also  tied  with  the  service,  which  may  be 
proactively called, when needed (e.g. when the software agent or person needs to know the 
actual temperature in the room, it may call the getTemperature service, which will return 
the  actual measurement value also provided by the particular event of device). 

Of  course,  in  the  context  of  ebbits,  there  are  also  the  concepts  of  higher  level  events,  which 
represent the occurence of real-wold situations including also people or business events (such as 
meetings, occurence of situations started or caused by the people, complex situations representing 
the system states, etc.). The same counts for the services, which also may have a higher level 
interpretation (such as enterprise services, etc.). This interpretation of the events and services are 
the part of ebbits eventing architecture, but are out of scope of this deliverable and are planned to 
be  covered in the WPs  3 and 6.

In most of the cases, it is required to answer the questions related to the devices, services and the 
events related information. The starting preliminary requirements were derived partly from the state 
of the art and partly from the assumed functionality to be provided by ebbits. Features, which  has  
to be modelled can be outlined in the form of questions as follows:

• service properties:

◦ what is the name and the (taxonomy) type of the service?

◦ what are are the service inputs and outputs, including: names and datatypes of I/O 
parameters; units of I/O parameters?

◦ what  are  the  service  capabilities  (capabilities  can  extend  the  information  about  the 
service in more human readable way, but still standardized also for software agent, e.g. 
„measures temperature“ or „sends SMS“)?

• event properties:

◦ what is the name and the (taxonomy) type of the event?

◦ how is the event triggered? is it triggered by the particular stimuli (the occurence of 
some situation in the environment) or is it triggered in specified frequency?

◦ if the event is triggered by the stimuli, what do we know about this stimuli?

◦ what is  the feature of interest of the event? what properties of the environment does 
the event observe?

◦ what is the structure of the result returned by the event? what are the names, data 
types and units of the particular parts of this result?

◦ where are the data acquired by this event stored and how can they be accessed?

◦ what are the event-management infrastructure related properties of the event (e.g. in 
the case of subscriber-publisher architecture, the related properties could be: topics, 
where  the  event  is  published  and  the  set  of  key-value  pairs  holding  the  published 
values)?
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◦ which service is tied to the functionality provided by the event, if any?

• device context information – where is the device located and who owns the device?

The  semantic  model  representing  the  above  requirements  will  enable  to  answer  also  very 
complicated questions, such as: Which events flushed by devices in manufacturing hall observe the 
energy consumption of welding machines in units of Celsius?

Figure 12. Service model of Hydra ontology.

6.2 Hydra ontologies

The Hydra device ontology represents the concepts describing device related information, which can 
be used in both design and run time. The basic ontology is composed of several partial models 
representing specific device information. The components of the Device Ontology can be shortly 
described as follows: 

• core ontology: contains a taxonomy of various device types and the basic device description, 
manufacturer and model information. 

• device capabilities: represent the hardware properties and software description 

• device services: describes the models of device services in the terms of operation names, 
inputs and outputs. Services may have various capabilities and are also connected to the 
quality of service ontology used to annotate the services and their parameters to several 
quality factors. 

• semantic discovery support ontology: containing all information relevant for semantic 
resolution of low-level device discovery information serving as the base for semantic device 
model identification

• energy profiles ontology: represents the device energy consumption related information. 

• application ontology: contains the application domain dependent context information 
including models of people, ownership, locations, etc.

• events ontology: contains the full information about the events provided by device. 

• semantic devices ontology: represent the logical aggregates of composed devices to provide 
more advanced application related functionality. 
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• security ontology: represents the various security properties, such as protocols, algorithms 
or objectives, which may be attached to devices or services.

Figure 13. The application model of Hydra Ontology.

Hydra service model was created with the focus on the same requirements as listed above. Services 
are tied to devices, the have the description of I/O parameters including name, datatype and unit. 
Services  may  have  attached  more  static  capabilities  represented  in  the  related  taxonomy.  The 
semantic  model  for  service  composition  or  orchestration  usually  includes  the  richer  description 
containing  also  the  service  execution  preconditions  and  postconditions,  the  models  for 
composition/orchestration processes or grounding to concrete implementation (such as in the well  
known OWL-S [OWL-S, 2004] or WSMO [WSMO, 2005] semantic service ontologies).  As there is 
planned the dedicated service composition/orchestration framework implementation in WP7, there is 
no need for service processes modelling in the ontology and the prototype model of services will be 
reused from Hydra ontologies without extensions. The Hydra service model is illustrated in figure 12. 

The problem is, how the event is represented in the Hydra ontology. The only reason for adding the 
events to the device description was to provide this information to the developer, when designing 
the  application.  Events  could  be  possibly  added  just  manually  and  the  event  model  in  Hydra 
ontology have only informative purpose. 

Context information about the locations and ownership of devices is  in Hydra ontologies handled by 
the application domain ontology following the requirements (device domain context is illustrated in 
figure 13).

6.3 Prototype of event management support ontology design

With respect to the actual semantic model provided by the Hydra, the most important extension is to 
provide the semantic model of events and all related information. Following the requirements on the 
ontology prototype, the model of event must be extended by: the core taxonomy of events,  models  
of event results,  model of event stimulus (e.g. the occurence of the real-world situation or the 
specified value of the frequency of measurements), event capabilities, knowledge about the data 
storage used to store the event results and possibly the extensions enabling semantic support of 
event-management framework. 

The next sections will describe design of ebbits event ontology for particular requirements.
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Figure 14. The core of SSN ontology.

6.3.1 Event model

The existing sensor models provide various approaches for the event interpretation, many times 
aligned with the application domain, where the particular model was used. Based on the analysis 
and the requirements, the SSN ontology [SSN, 2010] was selected as the best candidate to be used 
when designing the ebbits event model (the ontology core is illustrated in figure 14). There are the 
two main reasons for this selection:

• The scope of the model: SSN ontology design is based on the wide state of the art analysis 
from which were derived concepts and relations related to sensors in order to standardize 
knowledge in this area; and the SSN ontology contains models of all concepts and features 
relevant for ebbits event ontology the best matching the specified requirements.

• The activity status: SSN ontology is the product of W3C Semantic Sensor Network Incubator 
Group activity, which is productive and alive community updating  reports, deliverables and 
models practically on the daily basis.

Figure 15. Stimulus-sensor-observation pattern

The most important starting step was to identify the relevant concepts in SSN ontology and to align 
the interpretation of this concepts to the ebbits event ontology. The SSN ontology skeleton is based 
on so-called Stimulus-Sensor-Observation pattern (see figure 15), which acts as the upper core-level 
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of the ontology. While the pattern is an integral part of the SSN ontology, it was also indented to be  
used separately as a common design pattern for all kind of sensor or observation based ontologies  
and vocabularies. Already from the first view of the model conception it is  quite clear,  that the 
representation is very related to the ebbits needs. Identified most relevant concepts and properties 
of SSN ontology and their interpretation are summarized as follows:

• Sensor represents  any object  with the sensing capability  (e.g.,  in  some cases a human 
observer can be a sensor). Sensor has following relevant properties:

◦ detects Stimulus: Relation to the stimuli, which sensor can detect and which may trigger 
the sensor.

◦ observes Property: Relation to the property, which sensor can observe. Each property is 
the quality of the real  world. Observed properties may compose the stimulus, which 
triggers the sensor.

◦ madeObservation Situation: relation between sensor and the observations, which were 
made.  In  materialized  model,  the  observations  are  linked  to  instances  of  the 
Observation concept, which is the sub-class of the Situation concept.

◦ hasMeasurementCapability  MeasurementCapability:  Relation  to  the  measurement 
capabilities of the sensor. 

• Observation ia s situation in which a sensing method has been used to estimate or calculate 
a  value  of  a  property  of  a  feature  of  interest.   Observation  has  the  following  relevant 
properties:

◦ observationResult SensorOutput: Relation to the value produced by the observation.

◦ featureOfInterest FeatureOfInterest: Relation to the feature of interest of the concrete 
observation.

◦ observedBy Sensor: Relation to sensor, which realized the observation.

◦ observedProperty Property: Relation to he properties, which can be observed via stimuli 
by  a  certain  type  of  sensors.  They  inhere  in  features  of  interest  and  do  not  exist 
independently. While this does not imply that they do not exist without observations, the 
domain is restricted to those observations for which sensors can be implemented based 
on certain procedures and stimuli. 

• FeatureOfInterest is an abstraction of the real world phenomena (thing, person, event, etc). 
Features of interest are entities in the real world that are the target of sensing. The relavant 
property here is:

◦ hasProperty  Property,  which  should  take  into  account  the  relation  between  stimuli, 
observed properties  and the  properties,  which  are  in  the  feature  of  interest  of  the 
sensing.

• SensorOutput  is  piece  of  information  (an  observed  value)  produced  by  the  sensor 
observation. Relevant properties are: 

◦ isProducedBy Sensor: Which sensor produced the result.

◦ hasValue ObservationValue: The result is a symbol representing a value as outcome of 
the observation. Results can also act as stimuli for other sensors and can range from 
counts and Booleans, to images, or binary data in general.

• MeasurementCapability collects  together  measurement  properties  (accuracy,  range, 
precision, etc) and the environmental conditions in which those properties hold, representing 
a specification of a sensor's capability in those conditions. Relevant properties:

◦ forProperty  Property:  A  relation  between  some  aspect  of  a  sensing  entity  and  a 
property.  For  example,  from a  sensor  to  the  properties  it  can  observe  or  from  a 
measurement capability to the property the capability is described for.
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◦ hasMeasurementProperty MeasurementProperty: Relations to the particular properties of 
the measurement. MeasurementProperty class it  the root of the taxonomy of sensor 
properties, including e.g.: Accuracy, Frequency, Latency, Precission and many more.

◦ inCondition Condition: Relation to the measurement conditions used to specify ranges 
for qualities that act as conditions on a system/sensor's operation.  For example, wind 
speed of 10-60m/s is expressed as a condition linking a quality, wind speed, a unit of 
measurement, metres per second, and a set of values, 10-60, and may be used as the 
condition  on  a  MeasurementProperty,  for  example,  to  state  that  a  sensor  has  a 
particular accuracy in that condition.

• Stimulus represents  an event  in  the  real  world  that  triggers  the  sensor.  The properties 
associated to the stimulus may be different to eventual observed property.  It is the event,  
not the object that triggers the sensor. Documentation also says, that observed properties 
are the only connection between stimuli, sensors, and observations on the one hand, and 
features of interests on the other hand. As the Stimulus inherits all properties from super-
classes, it is not quite clear, what is the connection between observed properties and the 
stimulus attached to the sensor.

• Property is an observable quality of an event or object.  That is, not a quality of an abstract  
entity as is also allowed by DUL's Quality, but rather an aspect of an entity that is intrinsic to 
and cannot exist without the entity and is observable by a sensor.

In the context of ebbits, the concept of SSN Sensor corresponds to the concept of Device, which 
produces the low-level events; and the concept of SSN Observation best matches the Event concept 
in ebbits. In this context, the most of the properties tied with SSN Sensor concept, such as detected 
Stimulus or MeasuredCapability would radher belong to the Event concept in ebbits. The reason for  
this is to be able to specify all of this properties for particular device Events provided by the device 
separately. The SSN ontology is primarilly designed as the semantic model of sensors.  In ebbits, the 
description of devices (including sensors) is much more general and the models of events are just 
the part of description of devices. In this sense, it seems, that it would be more easy to understand 
the interpretation of the model, if it would be clearly defined, that the each particular Event (not the 
sensor or device in this case) is triggered by some stimulus, observes concrete properties in the 
environment,  produces  the  results  and  has  specific  measurement  capabilities  in  the  different 
circumstancies. The concepts designed in SSN are very similar to those to be used in ebbits event  
model, but the interpretation is different according to the purpose of the both models. 

The SSN ontology is very large and generic (also because it is aligned with DUL upper ontology), the 
interpretation of concepts and relations differs, and the preliminary requirements on ebbits event 
model are not yet based on the real needs of the ebbits platform, but mainly on the expectations. In 
this case the better decistion for creating the preliminary event model in ebbits seems to be to take 
the SSN ontology as the inspiration instead of reusing the whole ontology. The model of events in  
ebbits takes the advantages of the concepts proposed by SSN ontology. Some of the concepts are 
simplified, some interpretation of relations is adapted to the needs of ebbits.

The parts of design of ebbits event ontology will be described in more details. The preliminary basic 
model of event is illustrated in figure 16.

The core taxonomy

The core taxonomy of events has two main sub-classes according to the form of the event stimulus, 
the taxonomy will be further extended in the future according to the devices and events used in the 
ebbits:

• SituationTriggeredEvent is triggered by the occurence of situation in the real-world. This 
type of event has linked the Situation class through situationStimulus property. The model of 
situation can be quite complex, as it can also contain the logical  relations of certain atomic 
situations  in  the  wold.  As  there  is  not  enough precise  specification,  what  this  situation 
should describe, the model for this kind of stimulus is left empty for the prototype and 
should be specified in the future following the real cases.
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• PermanentlyTriggeredEvent is not triggered by the occurence of situation, but continually 
produces  the  results  in  some  frequency.  This  type  of  event  has  linked  the 
PermanentStimulus class through the  permanentStimulus property. The model, describing 
when and how the event is triggered, will be extended in the future according to the real  
cases.

As in some cases, the functionality provided by the event can be tied with the service, which may 
execute this functionality using the service call. In the ontology, the Service class is associated with 
the Event class using executesEvent property.

Figure 16. The ebbits event model design.

Observed properties

The observed properties represent the qualities of the world, which the device is capable to measure 
using the event. Event class can have multiple associations to the ObservedProperty class instances 
through the observesProperty relation. Observed properties serve as the feature of interest for the 
particular event. 

Based on the analysis of use cases provided by the real-world data structure state of the art, it 
seems to be enough to provide the suitable representation of the observations in the form of static 
taxonomy describing, what is observed with respect to the application domain. This taxonomy can 
be  further  extended to  satisfy  the  evolving  requirements  to  the  knowledge  needed for  proper 
decision making inside of the ebbits. 
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Observation result

The result of event is composed of the set of  EventResult instances produced by the sensor and 
linked to the  Event class through the  producesResult property. The instances of  EventResult class 
may  have  the  association  to  the  ObservedProperty instances  attached  to  Event through  the 
forObservedProperty relation. Using this relation it is  possible to tie the produced results to the 
particular observed qualities of the real-world. In addition, each event result specifies the unit of the 
result and may also specify the maximum and minimum expected value, each also tied to the unit of  
the result.  The unit specified for the result, maximum and minimum value must be the the same to 
keep the interpretation of the resulting value consistent. 

Figure 17. Example of semantic model of the concrete event.

Based on the analysis of use cases provided by the real-world data structures state of the art, the 
data in events are in both manufacturing and agriculture domain expected to be the basic data 
types, such as booleans or strings. Anyway, the state of the art also proposes the usage of higher  
level  standards  for  the  result  description,  such  as  Common  Information  Protocol  or  Common 
Information Model used within the ZigBee WSN standards. In this stage of the design this standards 
are just the proposition to be investigated in the future. Thus, the preliminary design of the event 
ontology  represents  the  event  results  in  the  very  basic  way  using  only  the  basic  data  types. 
Example of model of event handling the two observations of the machine status in manufacturing 
domain is illustrated in figure 17.
The real values produced by the event are not modelled in the ontology. The reason is, that the 
ontology serves only as the model describing the particular events. The values, which are produced 
are caught by the ebbits infrastructure and ontology serves only as the decision support component 
providing all information relevant for the events. Anyway, sometimes the results produced by events 
and the events themselves are stored and have to be retrieved e.g. for the purposes of historical  
data analysis. Description, how this information is represented will be provided in the next section.
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6.3.2 Semantic support of event management framework

In most of the cases, the basic benefit of semantic for underlying event management architecture 
used, is to be able to answer the questions or to retrieve all required information supporting decision 
making processes. The semantic support will be implemented in the form of services provided by the 
semantic infrastructure, which would be universally used by any component in the ebbits. In some 
cases, the semantic support will have to be implemented on the level of event management 
architecture depending on the selected technology (e.g. in the form of build-in predicates used in 
the EPL queries of Esper framework; or by the dedicated services used when handling events 
provided by standard Java JMS technology; etc.).

6.3.3 Event data storage and access support

In some cases, the results produced by the events must be stored in order e.g. to perform analysis 
using the historical data. This leads to the requirements on the semantic model to be able to provide 
all necessary information about where and how data are stored and how could they be retrieved. 
The most important issue here is, that data from some physical storage, such as relational database, 
should not be replicated in the ontology. It is required to be able to access the stored data natively 
from its storage. In the ideal scenario, the ontology would represent only basic metadata about the 
data storage location and access information; and character of data. In case of relational database, 
the  location  and  access  information  would  be  the  connection  string  and  database  name  and 
description of metadata of used tables. This information can be tied with the specific instance of the 
event. Once the historical data are needed, the ontology is asked for required storage information  
and internal ebbits infrastructure would enable to access and retrieve the data using the ontology 
representation.

In order to design the appropriate knowledge representation of data storage, the technologies for 
mapping of relational databases to semantic models were investigated. The D2RQ framework seems 
to be one the best candidates for the mapping in the case, when the data storage is the relational 
database. D2RQ enables to specify the database connection properties and to design the custom 
mapping rules beween the database meta-data and the ontology model. Using this mapping, the 
SPARQL query on the ontology is translated to the SQL queries and executed against the database.  
The results are serialized into the standardized SPARQL result. When using the D2RQ mapping, it is  
enugh to extend the event model with the mapping file created using D2RQ rules. As the mapping 
file can be serialized into the ontology notation language, the model can be easily extended. The 
D2RQ engine is required for query execution.  

An alternative approach, especially when using the different storage than relational database would 
be to provide the whole model of stored data attached to the event and then implement the custom 
component inside of the ebbits infrastructure, which would use the semantic representation of the 
data, automatically translate it into the query specific for the data storage and process the results. 
The model describes the database connection, the tables used and the meta-data for each particular 
table. This information would be enough to be able to compose the SQL query quite easily. This  
approach would work for the simple cases, when the data are stored in the single table for the 
event. The extension for joining the data from various tables must be further investigated, when 
some use case would require it.

6.3.4 Future work

This deliverable proposes only the preliminary semantic model of low-level events produced by the 
devices as the result of specific environment observations. The requirements for the model design 
were derived only from the state of the art focused on existing models and technologies; and from 
the  requirements  specified  based  on  the  assumptions  and  lessons  learned  from  previous 
experiences. The appropriate real use cases for using the event models were not available in this 
phase of design. The most of future work will be focused on analysis and implementation of real use  
cases and requirements, so the model will evolve with changing requirements. 
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Another  very  important  issue  is  to  increase  the  interoperability  of  the  ebbits  ontologies.  The 
narrower  integration  of  ebbits  ontologies  with  existing models  (such as  SSN ontology  or  upper 
ontologies, such as DUL) should be considered, if possible.
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