
Document version: 1.0 Submission date: 1.4.2011

Enabling the business-based

Internet of Things and Services

(FP7 257852)

D4.2 Knowledge representation formalism analysis

Published by the ebbits Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 2 of 35 Submission date: 1.4.2011

Document control page

Document file: D4.2 Knowledge representation formalism analysis.doc
Document version: 1.0
Document owner: Jan Hreno (TUK)

Work package: WP4 – Semantic Knowledge Infrastructure

Task: T4.5 – Knowledge creation analysis
Deliverable type: P

Document status: approved by the document owner for internal review
 approved for submission to the EC

Document history:

Versio
n

Author(s) Date Summary of changes made

0.0 Jan Hreno(TUK) 2011-02-01 Initial TOC

0.1 Premchand Nutakki (SAP),
Martin Knechtel (SAP)

2011-03-17 Sections 3.2 - 3.6

0.2 Karol Furdik (IS) 2011-03-20 Section 3.9 on semantic web services

0.3 Jan Hreno 2011-03-20 Section 3.7,3.8, 4

0.4 Karol Furdik 2011-03-23 Section 3.9 finished, Section 4.3

0.5 Jan Hreno 2011-03-23 Introduction, Conclusion, Executive

summary

0.6 Tomas Sabol (TUK) 2011-03-23 Overall corrections

1.0 Jan Hreno, Premchand
Nutakki, Karol Furdik

2011-03-31 Final corrections

 2011-04-01 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Riccardo Tomasi (ISMB) 2011-03-28 Approved with comments

Matts Ahlsén (CNET) 2011-03-27 Approved with comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 3 of 35 Submission date: 1.4.2011

Index:

1. Executive summary ... 4

2. Introduction .. 5
2.1 Purpose, context and scope of this deliverable ...5
2.2 Background ...5

3. State of the art of knowledge representation formalisms 6

3.1 Introduction ...6
3.2 Semantic Networks and Frames: ..6
3.3 DLs in Semantic Web ..7
3.4 Explanation and Debugging of Inferences ..7
3.5 Most used knowledge representation formalisms7

3.5.1 RDFS ...7
3.5.2 OWL 1.0 DL ..8
3.5.3 OWL 2 ..8
3.5.4 EL++ (OWL 2 EL) ..9
3.5.5 ELP ..9
3.5.6 OWL 2 RL ... 10
3.5.7 F-Logic 1 .. 10
3.5.8 F-Logic 2 .. 10

3.6 Tabular comparison of knowledge representation formalisms that are mainly

used ... 11
3.7 Supporting formalisms .. 12

3.7.1 eXtensible Markup Language ... 12
3.7.2 Resource identifiers ... 12

3.8 Query formalisms ... 12
3.9 Machine friendly syntaxes of knowledge serialization 13
3.10 Human friendly knowledge representation formalisms 14

3.10.1 RDF Notation 3, Turtle, N-Triples ... 14
3.10.2 OWL Syntaxes... 14
3.10.3 OBO Format .. 14
3.10.4 Graphical representation of knowledge ... 14

3.11 Semantic web service formalisms ... 15
3.11.1 SAWSDL ... 16
3.11.2 OWL-S ... 17
3.11.3 WSMO .. 17

4. Ebbits use cases analysis... 19
4.1 Knowledge representation formalisms example 19

4.1.1 Resorce identifiers ... 20
4.1.2 Textual representations comparison ... 20
4.1.3 Visualisation of ontology ... 23
4.1.4 Query formalisms .. 25
4.1.5 Semantic web services formalisms ... 26

5. Conclusion ... 29

6. References .. 30

7. ANNEX ... 34

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 4 of 35 Submission date: 1.4.2011

1. Executive summary

This deliverable contributes to the T4.5 task of the project.
The deliverable analyses the existing knowledge representation formalisms from different
aspects, including:

 Device and service modelling capability
 Language complexity
 Human usability and readability
 Machine usability

In the first section, an overview of the knowledge representation formalisms in historical
context is presented, along with an introduction to the most used formalisms. The following
section is the core section of the document and contains: an analysis of formalisms for
semantic web services; a description of human and machine optimized syntaxes and
formalisms; an introduction to simple knowledge representation methods suitable for devices;
a comparison of several formalisms used for knowledge representation and for querying the
model. In the final section, good practises for knowledge modelling in relation to a choice of
proper formalism(s) are proposed for the ebbits project.

The development of this deliverable was led by TUK with contribution from SAP and IS. These
partners were previously involved in various development and R&D projects, where semantic
technologies, including knowledge storing, sharing and reusing, were employed.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 5 of 35 Submission date: 1.4.2011

2. Introduction

2.1 Purpose, context and scope of this deliverable

The purpose of this deliverable is to provide an overview and critical evaluation of existing
knowledge formalisms and to analyse how a decision to select a proper formalism can
influence the ebbits platform and the use cases. For that purpose different formalisms will be
analysed, from basic knowledge representation formalisms like RDF, OWL to specific semantic
web service representation formalisms and formalisms used in knowledge reasoning and

querying. Rather than going too deep into particular formalisms specifications, which are
described in several freely available documents and tutorials1,2,3,4,5,6, this document
summarizes only the main properties and characteristics of these formalisms in the state of the
art chapter. In the following chapter a relation to the ebbits use cases is analysed. Some
examples, related to a preliminary ebbits automotive use case, are presented. These examples
use different formalisms to represent knowledge about a chosen device. Finally the
summarization chapter shows consequences of formalisms usage on the ebbits system.

The deliverable is delivered within the T4.5 Task ‖Knowledge creation analysis‖ and this
deliverable will be followed (after two months) by the deliverable D4.3 ―Coverage and scope
definition of a semantic knowledge model‖. The task is intended to form a common
understanding base of semantic technologies between partners for the future tasks where
knowledge models will be developed (T4.6, T4.1-T4.4).
The deliverable is addressing problems that have to be understood by the whole consortium
and thus is intended to be used by developers as well as the user partners. As it is delivered as
a public deliverable, wider professional community can also learn about the project approach

to the use of the knowledge representation standards.

2.2 Background

The goal of Task 4.5 according to the DOW states as follows ―This task will analyse the
required scope and coverage of the semantic model, specifically for the use cases in ebbits.
Semantic interoperability of devices and information systems’ resources needs a common
defined terminology. One way to provide this is to adhere to standard interaction protocols and
data formats. In fields, where such a standardisation does not exist since interaction
mechanisms and architecture is in its innovative structure not yet covered by existing
standards, a shared semantic model helps out.
Most often, an ontology is used to store a formal representation of a shared conceptualization.
ebbits needs a semantic model in order to allow for semantic interoperability. In this task we
will analyse the required scope and size of the semantic model in order to prepare its creation
systematically. Based on the of knowledge representation formalism analysis carried out, IS
will propose coverage and scope definition of the semantic knowledge model, inputs and
comments will be provided by TUK. ISMB will contribute to the definition of solutions enabling
semantic interoperability between physical devices and information systems.”

1 XML tutorials http://www.w3schools.com/xml/
2 RDF tutorials http://www.w3schools.com/rdf/
3 Protégé OWL tutorial http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
4 TopBraid Getting Started Guide http://www.topquadrant.com/composer/docs/TBC-Getting-
Started-Guide.pdf
5 SPARQL tutorial http://jena.sourceforge.net/ARQ/Tutorial/
6 Describing Web services using OWL-S and http://www.ai.sri.com/daml/services/owl-
s/1.1/owl-s-wsdl.html

http://www.w3schools.com/xml/
http://www.w3schools.com/rdf/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
http://www.topquadrant.com/composer/docs/TBC-Getting-Started-Guide.pdf
http://www.topquadrant.com/composer/docs/TBC-Getting-Started-Guide.pdf
http://jena.sourceforge.net/ARQ/Tutorial/
http://www.ai.sri.com/daml/services/owl-s/1.1/owl-s-wsdl.html
http://www.ai.sri.com/daml/services/owl-s/1.1/owl-s-wsdl.html

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 6 of 35 Submission date: 1.4.2011

3. State of the art of knowledge representation formalisms

3.1 Introduction

formalism (Philosophy / Logic)
the notation, and its structure,

in which information is expressed
(Collins English Dictionary

HarperCollins Publishers 2003)

This document attempts to describe and analyse notations and structures that are used in
areas of relevance to ebbits. These formalisms can be used for storing, retrieving,
transforming, reasoning, querying or presenting the knowledge.

3.2 Semantic Networks and Frames:

Description Logics (DLs) evolved from the early knowledge representation (KR)
formalisms like Semantic Networks and Frames, both of them introducing the notion of classes
of individuals and relations between the classes.

In Semantic Networks (Quillian 1967), a class or an individual is represented by a
vertex and a relation by a labelled edge (Figure 1). The special is-a relation relates two classes
or an individual and a class. Relations are inherited along is-a edges.

Figure 1 An example Semantic Network

In the Frame systems (Minski 1981), classes are implemented as Frames, where each

Frame has a name, a collection of more general Frames, and a collection of slots. The slots
specify relations to other classes, similar to the edges in the Semantic Networks.

The problem of both formalisms, Semantic Networks as well as Frames, is a lack of
formally defined semantics. Meaning of a given knowledge representation is left to the intuition
of the programmer who builds a reasoner. Consequently for the is-a relation there are at least
six different meanings for the is-a relation between two classes, and at least four different
meanings for the is-a relation between an individual and a class (Brachman 1983).

For Semantic Networks and Frames, the semantics introduced in (Schubert, Goebel and
Cercone 1979; Hayes 1979) employed a relatively small fragment of the first-order logic. Based

on these KR formalisms, logic-based concept languages were developed, which are known as

Description Logics.
The Description Logics (Baader et al. 2003) are today embodied in many knowledge-

based systems and are used for development of various real-life applications. The most
popular application is Semantic Web. The W3C developed and recommended OWL as a
standard ontology language for the Semantic Web (Motik, Patel-Schneider and Parsia 2009),
and DLs provide its basis.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 7 of 35 Submission date: 1.4.2011

3.3 DLs in Semantic Web

Already some time ago it has been realized that the Web could benefit from making its
content available in a machine processable form, which would enable computers to interpret
the data. While the Web language HTML is focused on presentation and text formatting rather
than content, languages such as XML do add some support for capturing the meaning of the
Web content. The Semantic Web has been envisioned as an evolution from a linked document
repository to a platform where ―information is given well-defined meaning, better enabling
computers and people to work in cooperation‖ (Berners-Lee, Hendler and Lassila 2001) and, to
limit the scope, which ―will enable machines to COMPREHEND (original emphasis) semantic
documents and data, not human speech and writings‖ (Berners-Lee, Hendler and Lassila
2001).

This is to be achieved by augmenting the existing layout information with semantic
annotations that add descriptive terms to the Web content, with the meaning of such terms
being defined in ontologies. The DARPA Agent Markup Language (DAML) and Ontology
Inference Layer (OIL) ontology languages for the Semantic Web are syntactic variants of DLs
(Horrocks 2002) and have been the starting point for the W3C Web Ontology Working Group.
The Working Group finished its work in 2004 with the publication of the OWL standard

(Bechhofer et al. 2004). In 2007 the W3C OWL Working Group began to work on refinements
and extensions to OWL, and finished with the publication of the OWL2 standard (Motik, Patel-
Schneider and Parsia 2009) in 2009.

3.4 Explanation and Debugging of Inferences

Similarly to writing large software systems, building large-scale ontologies is error-

prone. An ontology might imply unexpected or even undesired consequences. A real-world
example of an unintended consequence is the subsumption relationship ―amputation of finger
is an amputation of arm‖, which follows from the SNOMED CT (Systematized Nomenclature of
Medicine Clinical Terms) ontology (Suntisrivaraporn 2008). However, finding a reason, i.e. a
set of related axioms, by just looking at 400,000 axioms manually, is not realistic. Humans are
usually not good in seeing implications from large sets of axioms. So we can define an
explanation for a consequence following from the ontology as a minimal set of axioms (MinA)

from the ontology from which the consequence still follows. The dual notion of a MinA is that of
a diagnosis, a minimal set of axioms, which need to be removed so that a consequence does
not follow anymore. By making use of the two concepts above we can perform debugging of an
inference by finding explanations and removing the cause.

3.5 Most used knowledge representation formalisms

Most of the content below is from (Dau et al. 2009). Various knowledge representation
formalisms are used today, while each system has different requirements like expressivity,
performance etc. So, choosing an appropriate formalism is also an important task. For sake of
example, a simple ebbits-oriented case study has been described using some of the knowledge
representation formalisms in Section 4. Thus, we provide a brief introduction to the commonly
used KR formalisms:

3.5.1 RDFS

RDFS or RDF Schema (Resource Description Framework Schema - Brickley and Guha
2004) is an extensible knowledge representation language, providing basic elements for the
description of ontologies, called also RDF vocabularies, intended to structure RDF resources.
The RDF is a family of W3C specifications originally designed as a metadata data model which
slowly became a general method for conceptual description or modeling of information that is

implemented in web resources and the RDFS vocabulary builds on the limited vocabulary of
RDF. RDFS also provides mechanisms for describing related resources and the relationships

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 8 of 35 Submission date: 1.4.2011

between these resources. These resources are used to determine characteristics of other
resources, such as the domains and ranges of properties. RDF Schema vocabulary descriptions
are written in RDF. (Manola and Miller 2004) describes some actual deployed RDF applications,
showing how RDF supports various real-world requirements to represent and manipulate

information about a wide variety of things.

3.5.2 OWL 1.0 DL

The Web Ontology Language OWL (Dean and Schreiber 2004) is a semantic markup
language for publishing and sharing ontologies on the World Wide Web. The OWL is developed
as a vocabulary extension of RDF and is derived from the DAML+OIL Web Ontology Language

and is designed to facilitate ontology development and sharing via the Web, with the ultimate
goal of making Web content more accessible to machines. OWL DL (where DL stands for
"Description Logic") was designed to support the existing Description Logic business segment
and to provide a language subset that has desirable computational properties for reasoning
systems. The OWL DL is obtained by placing some constraints on the use of the OWL language
constructs so that a decidable reasoning procedure can exist for an OWL reasoner. There are
numerous tools to generate an ontology (Protege, TopBraid, Swoop, OntoStudio, Neon) and
several inference algorithms (Fact++, RacerPro, OntoBroker (KAON), pellet) were
implemented. Since OWL is a W3C standard, it is particularly suitable for the integration of
multiple, distributed resources on the web.

3.5.3 OWL 2

The W3C OWL 2 Web Ontology Language (OWL) is a Semantic Web language designed
to represent rich and complex knowledge about things, groups of things, and relations
between things (OWL 2009, Hitzler et al. 2009). OWL 2 ontology documents describe
information in terms of classes, properties, individuals, and data values the relationships of
which can be described by a number of features. OWL 2 ontologies can be used along with
information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF
documents. The OWL 2 is compatible with the prior OWL 1 ontology language. The main
enhancements in comparison to the OWL 1 are (Hitzler et al. 2009):

 Property chains

 Asymmetric, reflexive, disjoint properties
 Richer data types, data ranges
 Qualified cardinality restrictions
 Enhanced annotation capabilities
 New profiles and a new syntax
 Keys

Also, some of the constraints applicable to OWL DL have been relaxed.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 9 of 35 Submission date: 1.4.2011

Figure 2 Structure of OWL 2

Figure 2 (Hitzler et al. 2009) gives an overview of the OWL 2 language, showing its

main building blocks and how they relate to each other. The ellipse in the center represents
the abstract notion of an ontology, which can be thought of either as an abstract structure or
as an RDF graph. At the top there are various concrete syntaxes that can be used to serialize

and exchange ontologies. At the bottom there are the two semantic specifications that define
the meaning of the OWL 2 ontologies.

3.5.4 EL++ (OWL 2 EL)

The OWL 2 EL is a profile of OWL 2 (Motik et al. 2009), i.e. a sub-language,
characterized by lower expressiveness that makes it more comprehensible for humans and

enables more efficient inference algorithms (Dau et al. 2009). The class constructors are
restricted to conjunction, existential restriction and nominal (singleton class containing one
individual). Property can be declared as transitive or reflexive and limitations on the range and
domain of a property are possible, as is the use of data types. Classes and properties can be
declared as sub-classes (or properties) of other classes and properties. The OWL 2 EL is a
formalism that

 is particularly suitable for applications employing ontologies that define very large
numbers of classes and/or properties,

 captures the expressive power used by many such ontologies, and
 for which the ontology consistency, class expression subsumption, and instance

checking can be decided in polynomial time.

For example, the OWL 2 EL provides class constructors that are sufficient to express very large
biomedical ontology SNOMED CT.

3.5.5 ELP

The ELP is a description logic based on the OWL 2, which has been developed only
recently in (Krötzsch, Rudolph and Hitzler 2008) and special attention is paid to it due to the
fact that most powerful rules can be expressed, but the logic is still decidable in polynomial
time. In particular, the ELP is a decidable fragment of the (undecidable) Semantic Web Rule
Language (SWRL). The ELP includes:

 Description Logic Programs (DLP - Grosof et al. 2003), also OWL 2 RL (see below).

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 10 of 35 Submission date: 1.4.2011

 EL++, also OWL 2 EL.
 DL-safe Datalog.

In simple words, the ELP is the union of EL++ and DLP. While the ELP can be viewed as an
extension of both formalisms, however, it limits interactions between the expressive features

of either language and thus preserves polynomial time reasoning complexity (Dau et al. 2009).
Since the ELP is a very new language proposal, there does not exist a sufficient support for
the ELP with tools for modeling ontologies or for drawing conclusions in ontologies.

3.5.6 OWL 2 RL

The OWL 2 RL profile (Motik et al. 2009) is aimed at applications that require scalable
reasoning without sacrificing too much expressive power. It is designed to accommodate both
OWL 2 applications that can trade the full expressivity of the language for efficiency and
RDF(S) applications that need some added expressivity from the OWL 2 (Dau et al. 2009). It
enables implementation of polynomial time reasoning algorithms using rule-extended database
technologies operating directly on RDF triples; it is particularly suitable for applications where
relatively lightweight ontologies are used to organize large numbers of individuals and where it

is useful or necessary to operate directly on data in the form of RDF triples. The design of OWL
2 RL was inspired by the Description Logic Programs (DLP - Grosof et al. 2003) and pD*
(Herman and Horst 2005). T(s,p,o) represents a generalized RDF triples with subject s, the
predicate p and object o, in which empty nodes (bnode) and literals (literals) are allowed in all
positions. Variables are denoted by a preceding question mark. The symbol false represents a
contradiction: if it is derived, it means that the initial RDF graph contains inconsistencies. Rules
are specified as universally quantified implications of the first order logic to a ternary predicate
T.

3.5.7 F-Logic 1

The F-Logic is a deductive, object-oriented database language (Dau et al. 2009).
Explicit factual knowledge is represented in the F-Logic by logic programs. This includes
knowledge about objects, relations between objects and classes to which objects belong.
Additionally, it allows the modeling of implicit, intentional knowledge in the form of rules and
queries (Kifer, Lausen and Wu 1995). The basic building blocks of knowledge representation
with the F-Logic are terms and predicates. A term is a constant, a function, or variable.
Predicates represent atomic elements of knowledge and can be either true or false. Due to the
object-oriented character of the F-logic, epistemological primitives for object-oriented
modeling such as definition of subclass- and instance-of- relations and signature specifications
for methods are also provided. It is used in a range of applications for information integration,
question answering and semantic search.

3.5.8 F-Logic 2

The F-Logic 2 has been obtained by extending F-Logic 1 with many additional features
(Dau et al. 2009). The syntax for attributes and relations is added and the F-Logic 2 also
allows specification of cardinalities, quantification of variables in queries, rules and the syntax
of aggregations has been changed as well. Compared with the original F-Logic more data types
are supported. To use this in an appropriate manner, there are a variety of built-in features.
This supports, for example, arithmetic or string operations. For a given attribute or a relation
we can specify minimum and maximum values of an instance. Also, the F-Logic-2 syntax
allows to specify for each attribute and each relation, whether it can be inherited by subclasses
or not. This property is important in the context of meta-modeling.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 11 of 35 Submission date: 1.4.2011

3.6 Tabular comparison of knowledge representation formalisms that

are mainly used

Most of the following content below is taken from (Dau et al. 2009). We will compare the
following categories of properties amongst the above mentioned KR formalisms.

1. Expressiveness: This category describes various types of statements that are possible
in the language.

2. Modelling: This category deals with modelling issues.
3. Semantics: This category deals with the details of the semantics of the language

4. Infer: This category deals with the derivation of new knowledge
5. Query: How are ontology queries supported?
6. Web compliance: Does the ontology language (and its query languages) follow the W3C

recommendations?

The comparison is shown by ranking the abilities of the DLs in the range [0...4].
(Note: ‗0‘ specifies that the property can‘t be expressed by the formalism and value ‗4‘ specifies that the property can

be very easily expressed by the formalism. ‗1‘ specifies that the property can be expressed but not in an effective way.

Similarly, value ‗2‘ and ‗3‘ specifies that the properties are fairly and quite easily and efficiently expressible by the

formalism respectively.)

 RDFS OWL 1.0
DL

OWL 2 EL++ ELP OWL 2
RL

F-LOGIC
1

F-LOGIC
2

 EXPRESSIVENESS

Binary relations 4 4 4 4 4 4 4 4

Higher order relations 2 1 1 1 1 1 4 4

Hierarchy of classes 4 4 4 4 4 4 4 4

Hierarchy of relations 4 4 4 4 4 4 3 3

Disjointness of classes 0 4 4 4 4 4 2 2

Negation of classes 0 4 4 0 0 4 2 2

Complete coverage by
subclasses

0 4 4 0 0 3 2 2

Existential quantification 0 4 4 4 4 4 2 2

Universal quantification 1 4 4 0 0 4 2 2

Domain/Range restrictions 4 4 4 4 4 3 4 4

Qualifying number restrictions 0 3 4 0 0 2 4 4

Unsafe/stochastic facts 0 0 0 0 0 0 1 1

Rules 0 0 2 2 3 1 4 4

Operational definitions 0 0 0 0 0 2 4 4

 MODELLING

Understandability 4 2 2 3 3 2 3 3

Visualization 4 2 2 2 2 2 3 3

Support Tools 4 4 4 1 0 2 3 3

Existing Ontologies 4 2 2 2 0 0 2 0

Mappings 2 2 2 2 2 2 4 4

Built-ins 0 1 2 2 0 0 4 4

Documentation 2 4 4 4 4 4 4 4

Modularization 4 4 4 4 4 2 4 4

Meta-modelling 4 0 2 2 0 4 4 4

Relations with parameter 1 1 2 2 2 0 4 4

Context transformations 0 0 0 0 0 0 4 4

 SEMANTICS

Semantics based on FOL 2 4 4 4 4 4 4 4

Semantics is formal 4 4 4 4 4 4 3 3

Open/Closed world semantics o o o o o o c c

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 12 of 35 Submission date: 1.4.2011

 INFER

Correctness 4 4 4 4 4 4 4 4

Completeness 2 4 4 4 4 3 4 4

Terminating 4 4 4 4 4 3 2 2

Works with uncertain facts 0 0 0 0 0 0 1 1

Consistency check 0 4 4 4 4 3 4 4

Generation of class hierarchy 4 4 4 4 4 4 4 4

Support Tools 4 4 4 1 1 2 4 4

 QUERY

Query languages 4 3 3 2 0 2 4 4

Expressiveness 4 4 4 4 0 2 4 4

Scalability for simple queries 4 4 4 4 4 2 3 3

Scalability for complex queries 4 2 2 4 4 2 3 3

Support of closing rules 4 2 2 4 4 2 4 4

Database access 4 2 2 2 2 2 4 4

Access to other sources 4 2 2 2 2 2 4 4

 WEB COMPLIANCE 4 4 4 4 2 3 2 2

Table 3.1: Comparison of various KR formalisms that are mainly used (Dau et al. 2009)

From Table 3.1 we can select the required KR formalism based on our requirements.

3.7 Supporting formalisms

3.7.1 eXtensible Markup Language

eXtensible Markup Language (XML) is used for encoding documents in a form readable
by machines. It is defined in the XML 1.0 Specification (XML 2008) produced by the W3C. XML
was chosen as a main formalism to be used in semantic web initiative by using XML based
RDF, RDFs, OWL formalisms. The use of XML as a base for the majority of currently popular
knowledge representation formalisms (or possibility to transform these into an XML form) has
very practical reasons. The XML is a universally accepted standard for structuring data

especially if it has to be sent over the HTTP protocol. A number of Web services technologies
(e.g. SOAP) are in fact based on manipulation and transfer of XML messages over the HTTP
protocol. This also means that there is a plenty of tools available for XML manipulation and
many developers are capable of working with these tools.

3.7.2 Resource identifiers

A Uniform Resource Identifier (URI) is a string of characters used to identify a name or

a resource. The URI syntax is defined in a IETF Network Working Group RFC3986 document
(Berners-Lee et al. 2005). URIs can be URLs (Locators) or URNs (Names). While URL is a name
for location on the Internet, URN has similar syntax, but it can be used for naming of anything.
The Internationalized Resource Identifier (IRI) is a generalization of the Uniform Resource
Identifier (URI). While URIs are limited to a subset of the ASCII character set, IRIs may
contain characters from the Universal Character Set. XML namespaces provide a simple
method for qualifying element and attribute names used in Extensible Markup Language

documents by associating them with namespaces identified by URI references. In the
knowledge representations, mainly based on some subset of OWL or RDF, which are XML
based, IRIs are used for namespace identification.

3.8 Query formalisms

Obtaining the particular knowledge from the knowledge representation is the
elementary requirement for using the semantic technologies. Together with the RDF for

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 13 of 35 Submission date: 1.4.2011

knowledge storing, a query language SPARQL was developed, which is currently the W3C
recommendation from 2008 (SPARQL 2008). The SPARQL is a query language for RDF, like
SQL for databases and XQuery and XPath for XML.

The SPARQL can be used to express queries across diverse data sources, whether the

data is stored natively as RDF or viewed as RDF via middleware. The SPARQL contains
capabilities for querying required and optional graph patterns along with their conjunctions and
disjunctions. The SPARQL also supports extensible value testing and constraining queries by
source RDF graph. The results of SPARQL queries can be result sets or RDF graphs. With the
growing need for integration of widely spread relational database systems with semantic
technologies, a question of integrated querying of combined RDF+RDB+XML resources has
been raised.
In (Elliot et al. 2009) an efficient not nested SQL is generated from the full SPARQL to be
processed with database engine. In (Chebotko, Lu and Fotouhi 2009) a similar approach is
proposed. The SQL produced there is semantically equivalent to the SPARQL input. A number
of optimizations in order to produce simpler and more efficient SQL are presented. Benchmarks
show that performance is comparable to native RDF storage systems. Triple stores using
relational databases for storing the data translate SPARQL queries into SQL queries. On the
other hand, the W3C RDB2RDF Working Group7 attempts to provide a specification for a

language to map relational data and relational schemas to RDF and OWL (called R2RML). In
(Bikakis et al. 2009) the SPARQL2XQuery Framework is described, providing a formal mapping
from OWL ontology to XML Schema and translating SPARQL to semantically equivalent XQuery.
In (Perez, Arenas and Gutierrez 2009) authors study complexity of the evaluation of several
fragments of the SPARQL language. According to them the SPARQL query evaluation is a
PSPACE-complete problem (any problem that can be solved in a polynomial amount of space
on a touring machine can be transformed into it in a polynomial time).
Some advantages of SPARQL are:

 SPARQL has strong support for querying with an unpredictable and unreliable structure.
Variables may be used instead of the predicate position to query unknown relationships,
OPTIONAL keyword enables querying relationships that may not occur in the data.

 SPARQL is built to support queries in a networked, web environment.
There are also disadvantages of using the SPARQL in comparison to SQL or XQuery:

 SPARQL is a rather recent language and has not so far a wide tool and system support,
as for example SQL OR XQuery.

 It is more difficult to query transitive or hierarchical relations in the SPARQL.

3.9 Machine friendly syntaxes of knowledge serialization

For formalisms to be machine-readable different syntaxes are used. The XML based
syntaxes of formalisms have the biggest set of available tools to be used to read from or write
into these syntaxes. The XML based OWL/RDF syntaxes are recommended syntaxes for
machines. Namespaces are used to distinguish individual knowledge bases. So-called SW

Parsers are used to read from textual documents containing knowledge models serialized in
different formalisms. These are used to import knowledge data into knowledge storages (triple
stores). Serializers are SW tools used to export data from the knowledge store to a textual
representation. By using the recommended standards for serialization and parsing (mostly
based on W3C recommendations) users ensure that their knowledge stores are compatible and
interoperable with others. The same is valid also for exchange of data inside semantically
enhanced intranet systems, where using open standards ensures easy upgradeability and
independence on particular products or solutions. Recommended formalisms are used not only
for storing, importing or exporting of data within isolated system, but also for exchange of
information between different systems connected on same network (usually Internet).

7 http://www.w3.org/2001/sw/rdb2rdf/

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 14 of 35 Submission date: 1.4.2011

3.10 Human friendly knowledge representation formalisms

Semantic technologies are intended not only to help computers to understand the
meaning of data, but also to help humans to share the same understanding of the data.
Formalisms for representation of the knowledge were developed to be understandable not only
for computers, but also for human. By using parsers and serializers, we can translate between
different formalisms, using one formalism for the exchange of information between machine
and human and different one for communicating only between machines.

3.10.1 RDF Notation 3, Turtle, N-Triples

The Notation 3 (N3)8 is a language, which is a compact and readable alternative to
RDF's XML syntax. It has subsets, one of which is RDF 1.0 equivalent (Terse RDF Triple
Language - Turtle9), and another one is RDF plus a form of RDF rules. Another subset of the
N3 is the N-Triples10 which is an RDF syntax for expressing RDF test cases and defining the
correspondence between RDF/XML and the RDF abstract syntax.

3.10.2 OWL Syntaxes

The most known OWL syntaxes focused on user friendliness are the Functional and the
Manchester OWL syntaxes. The Functional OWL syntax is a simple text base syntax. It is not
intended to be used as a syntax for exchanging data, but rather used for transformation from
structural specification into some concrete syntax. The Manchester OWL syntax is a user-
friendly compact syntax for the OWL 2 ontologies; it is frame-based in contrast to the axiom-
based syntaxes for the OWL 2.

3.10.3 OBO Format

The OBO Format11, originally used for biomedical ontologies only, can express a subset
of the description logic language OWL-DL 2.0, but in addition to that it has standard syntax for
representing classes of meta-data like synonyms and references to publications. It is designed
to be human readable and editable, easy to parse, easy to extend and to have minimal
redundancy.

3.10.4 Graphical representation of knowledge

Human in comparison to machine is capable of very efficient visual perception and
understanding. This is why there exists one very important way of presenting knowledge
representation to a human - graphical representation. Even if there is currently no generally
accepted standardization effort behind different graphical representations for ontologies, there
are some similarities between existing solutions. They are mostly based on some kind of
oriented graph visualisation (usually a tree), where nodes are representing objects or groups

of objects and connections between nodes represent relation of connected objects. These
graphs are based on an idea of semantic net (Richens 1956). Visual tools are used mainly for
design of knowledge models, but also for presenting these to non knowledge worker persons.
In (Katifori et al. 2006, 2007) authors try to determine advantages and disadvantages of
different ontology visualisation methods in the Protégé12 ontology editor and their suitability
for various ontologies and user groups.

8 http://www.w3.org/DesignIssues/Notation3
9 http://www.w3.org/TeamSubmission/turtle/
10 http://www.w3.org/TR/rdf-testcases/
11 http://www.geneontology.org/GO.format.obo-1_2.shtml
12 http://protege.stanford.edu/

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 15 of 35 Submission date: 1.4.2011

3.11 Semantic web service formalisms

 Semantic web service technologies build on the notion of the basic web service, which
could be considered as one of the main building blocks of the Service Oriented Architecture
(SOA). This progressive method of developing distributed information systems enables loose
coupling of system elements, i.e. various functional modules that provide and/or consume
shared or private information resources, in a transparent way, by means of standardised web
service interfaces. Software systems adhering to the SOA paradigm provide several important
functionalities achieved by the web services (Papazoglou 2003), namely:

- Service publication – service descriptions are created in a suitable format and are

published according to pre-defined standards in well-known locations;

- Service discovery – information retrieval techniques are employed on the published
service descriptions;

- Service selection – results of the discovery process are filtered according to the specified
query parameters;

- Service binding – the interface and transport protocol of a service is specified and the
service is ready to be executed.

According to (Cerami 2002), the definition of a Web Service is rather general: ―A web service
is any service that is available over the Internet, uses a standardised XML messaging system,
and is not tied to any operating system or programming language‖. Additionally the authors
postulate that web services shall be self-descriptive and discoverable. These features drove
streams of research efforts in this area as can be seen, for example, in (Curbera et al. 2002)
or (Alonso et al. 2008). Nowadays, web services are considered a well-established, advanced

and effective technological foundation for achieving interoperability between the elements of
distributed information systems. The specifications and parameters of web services are
standardised on the levels of service protocols, frameworks, and XML-based markup languages
– see, for example, in (WSA 2007), ISO/IEC 24824-2:2006, ISO/IEC 29361-3:2008, etc. In
general, three basic aspects of web services are fundamentally important:

- XML messaging system – most widely used implementations of XML messaging are SOAP
(Simple Object Access Protocol), XML-RPC (XMLRCP 2003) and REST (REpresentational
State Transfer) (Fielding 2000). SOAP is a lightweight protocol intended for exchanging
structured information in a decentralised, distributed environment (Gudgin et al. 2007).
SOAP basically works by tunnelling XML-formatted messages via Internet protocols
(SMTP, HTTP(S)) and is easy for implementation in existing infrastructures. XML-RPC
simplifies SOAP approach by a restriction to HTTP(S), where the XML content is
transferred in a POST message. REST further simplifies the process by usage of intuitive
request format directly based on the HTTP methods of GET, POST, PUT and DELETE.

Besides the XML-based data, REST can rely on different languages for content
representation (e.g. JSON or YAML). Nowadays, REST becomes very popular solution
with SOA and many technologies start to support this standard.

- Self-description of services – important for description of services in terms of available
functions with expected input. Various standards have been created during time which
can be grouped into two categories: a) Fundamental web service descriptions, which are
based on WSDL (currently in revision 2.0) (Chinnici et al. 2007), and b) Semantic web
service descriptions (Farrell and Lausen 2007) that additionally annotate service
descriptions in a semantic manner. Semantic web languages such as OWL-S (Semantic
markup for Web Services – Ontology Web Language) or WSML (Web Service Modelling
Language) are available for semantic annotations of web services. This semantic
enhancement enables automatic discovery, invocation, composition and interoperation of
heterogeneous web services.

- Discoverability – process of searching for services and retrieving information about them.

The UDDI (Universal Description, Discovery and Integration) standard (Clement et al.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 16 of 35 Submission date: 1.4.2011

2004) is typically used for the discovery of "general" web services (i.e. without an
additional semantic information). Implementers of UDDI can either be clients or servers,
so called registries, which store various information on web services - business entity
(publisher information), business service (descriptive information about service), binding

template (technical information about service), tModel (generic container to summarise
all technical information on the services). In practice, however, crawling via common
search engines is used for service discovery more frequently than by registries (Al-Masri
and Mahmoud 2008).

Web services can be composed into chains by means of pre-defined or ad-hoc calculated
workflow sequences, based on IOPE (i.e. inputs, outputs, preconditions, effects) characteristics

of elementary services. Related to the composition of web services, the notions of service
choreography and orchestration (Reynolds 2006) can be specified as follows:

- Orchestration relates to the (order of) execution of web services in a scope of specific
business processes. WS-BPEL (Jordan and Evdemon 2007) is a language for defining
workflow sequences in processes that can be executed on an orchestration engine.

- Choreography is related to a description of externally observable interactions between
web services. WS-CDL (Kavantzas et al. 2005) is a formal language for describing multi-
party contracts and can be seen as an extension of WSDL: WSDL describes web services
interfaces, WS-CDL describes collaborations between web services.

The ability to compose web services into complex workflow chains is enabled by technical
standards and specifications such as WSDL, SOAP, UDDI, etc. However, meaningful exchange
of inputs and outputs between chained services needs to be supported on the semantic level
as well. The semantic interoperability between possibly heterogeneous web services is
achieved by enhancing the WSDL descriptions of web services with additional information. A

survey of some of formal languages, which are most commonly used for semantic annotation
of web services, is provided in following subsections.

3.11.1 SAWSDL

The Semantic Annotations for WSDL and XML Schema (SAWSDL) recommendation (Farrell and
Lausen 2007) defines a set of extension attributes for WSDL, which allows an insertion of
semantic descriptions for web services. While the syntactic descriptions of WSDL provide

information about the structure of input and output messages of an interface and about how to
invoke the service, semantic extension is needed to describe what a web service actually does.
The SAWSDL specification defines how semantic annotation is accomplished using references
to semantic models, e.g. ontologies. It provides mechanisms by which ontology concepts,
typically defined outside the WSDL document, can be referenced from within WSDL and XML
Schema components using semantic annotations.

The annotation mechanism of SAWSDL uses the abstract definition of servicers, which is
represented in WSDL by Element Declaration, Type Definition, and Interface components. Such
a semantic annotation of abstract part of the service definition consequently enables dynamic
discovery, composition and invocation of services. The extension attributes defined by
SAWSDL are as follows:

- the modelReference attribute specifies the association between a WSDL or XML Schema
component and a concept in some semantic model;

- the liftingSchemaMapping and loweringSchemaMapping extension attributes are added
to XML Schema element declarations and type definitions for specifying mappings
between semantic data and XML.

Multiple semantic annotations are allowed for a single WSDL element in service descriptions.
Both schema mappings and model references can contain multiple pointers - URIs that
typically refer to concepts described in an external ontology. Multiple schema mappings are
interpreted as alternatives whereas multiple model references are all applied in parallel.
SAWSDL does not specify any other relationship between them.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 17 of 35 Submission date: 1.4.2011

3.11.2 OWL-S

The Semantic Markup for Web Services (OWL-S) is the OWL ontology for semantic description
of web services (Martin et al. 2004). The structure of the OWL-S consists of a service profile
for service discovery, a process model which supports composition of services, and a service
grounding that associates profile and process concepts with the underlying service interfaces.
Currently, the OWL-S is available in version 1.2 (Martin et al. 2008).

The class ServiceProfile of OWL-S ontology provides a superclass of every type of high-level
description of the service. It defines functional properties that describe IOPEs of a service, as
well as non-functional properties that describe semi-structured human-readable information
for service discovery, e.g. service name, description and parameters which incorporates

further requirements on the service capabilities (e.g. security, quality-of-service, geographical
scope, etc.).

The class ServiceModel specifies ways of operating the service in a workflow structure with
other services. The service is viewed as a process (represented by the Process sub-class of the
ServiceModel), which defines the functional properties of the service (IOPEs) together with
details of its constituent processes (if the service is a composite service). Functional properties
of the service model can be shared with the service profile.

Interactions between services are represented by the class ServiceGrounding. It enables
execution of the Web Service by binding the abstract concepts of the OWL-S profile and
process model to concrete message formats and communication protocols. Although different
message specifications are supported by OWL-S, the widely accepted WSDL is preferred as an
initial grounding mechanism.

3.11.3 WSMO

The Web Service Modeling Ontology (WSMO) is a conceptual model that was specifically
developed for describing semantic web services (deBruijn et al. 2005). The underlying
ontological specification of WSMO consists of four major components - ontologies, goals, web
services, and mediators:

Class wsmoTopLevelElement

 hasNonFunctionalProperties type nonFunctionalProperties

Class ontology sub-Class wsmoTopLevelElement

Class webService sub-Class wsmoTopLevelElement

Class goal sub-Class wsmoTopLevelElement

Class mediator sub-Class wsmoTopLevelElement

Ontologies provide an agreed common terminology, a formal semantics that can be used by all
other components. WSMO specifies the following constituents as a part of the description of
ontology: concepts, relations, functions, axioms, together with instances of concepts and

relations, as well as non-functional properties, imported ontologies, and used mediators.

Goals specify objectives that a client might have when consulting a web service, i.e.
functionalities that a web service should provide from the user perspective. The Goal element
is characterized by a set of non-functional properties, imported ontologies, used mediators, the
requested capability and the requested WSDL interface.

The Web Service elements are described by non-functional properties, references to imported

ontologies, used mediators, and the behavioral aspects of web services that are represented
by the capability and interface properties. The capability of a web service defines its
functionality in terms of preconditions, postconditions, assumptions and effects, which are
expressed by a set of axioms and shared variables. By means of the capability property, a web
service may be linked to certain goals that are solved by the web service by means of
referenced mediators. The interface of a web service provides further information on how the
service functionality is achieved. It describes the behavior of the service for the client's point of
view (i.e. service choreography) as well as the means of achieving overall functionality of the

service in terms of cooperation with other services (service orchestration).

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 18 of 35 Submission date: 1.4.2011

Mediators represent the elements that enable overcoming structural, semantic or conceptual
mismatches that appear between the components that build up a WSMO description.
Depending of the type of mediated components, four types of mediators are distinguished: 1)
OOMediators (for resolving semantic mismatches between the source and the target

ontologies); 2) GGMediators (for connecting goals into sub-goal hierarchies and resolving
mismatches between goals); 3) WGMediators (for linking a goal to a web service); and 4)
WWMediators (for connecting several web services into a collaboration structure).

All WSMO components are formalized using the Web Service Modeling Language (WSML),
which is based on the description logic, first-order logic and logic programming formalisms
(deBruijn et al. 2008). The WSMO framework is supported by the Web Service Modelling

eXecution environment (WSMX), which serves as a reference implementation for WSMO
(WSMX 2008).

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 19 of 35 Submission date: 1.4.2011

4. Ebbits use cases analysis

4.1 Knowledge representation formalisms example

In order to clarify the differences between the knowledge representation formalisms, a
simple device ontology describing the ebbits manufacturing scenario demo developed within
the WP5 can be created. Only one scenario from two was selected, as the proposed simple
model is generic enough to be used with a small modification for the other scenario as well.
The ontology describes a water pump device, which is capable of being monitored for its
current water and energy consumptions. Based on the Hydra project ontology (Kostelnik,

Sarnovsky and Hreno 2009) a small fragment of the ontology modelling the device was
prepared. Modelling has started with describing known facts by a few subject-predicate-object
(triple) statements:

Pump is a Device

Pump has an ActualEnergyConsumption

Pump has an ActualWaterFlow

As it was described in the D7.2 deliverable, measuring values of the device can be

better modelled as events based measurements. That enables splitting of the continuous
measuring into reasonable event based discrete measurements. One real device named
WaterPump1 was also added into the ontology, which is an instance of the generic object
Pump. Just to clarify, what would be the intention of such a model, we should say that this
model would not store any of real values measured on the device. It is considered that there is
another subsystem (let‘s call it for example a Measurement manager), which would do that
instead. The model presented here will be just the model, from which human or machine will
know, which one is the device that can measure observable values. The Measurement manager
can use the model for example for a decision, which particular device to check, if we need the
particular measure.
Thus the triple statements describing the situation can be modified to the following:

Generic objects (classes) and properties:

Pump is a Device

ActualWaterFlow is an ObservedProperty

ActualEnergyConsumption is an ObservedProperty

Device hasEvent Event

Event observesProperty ObservedProperty

ObservedProperty hasUnit Unit

Real objects (instances, individuals):
WaterPump1 isInstanceOf Pump

WaterPump1 hasEvent EnergyConsumptionEvent1

EnergyConsumptionEvent1 isInstanceOf Event

EnergyConsumptionEvent1 observesProperty ActualEnergyConsumption1

ActualEnergyConsumption1 instanceOf ActualEnergyConsumption

ActualEnergyConsumption1 hasUnit WattPerHour1

WattPerHour1 instanceOf Unit

WaterPump1 hasEvent WaterFlowEvent1

WaterFlowEvent1 instanceOf Event

WaterFlowEvent1 observesProperty ActualWaterFlow1

ActualWaterFlow1 instanceOf ActualWaterFlow

ActualWaterFlow1 hasUnit LiterPerHour1

LiterPerHour1 instanceOf Unit

What is above is still not a knowledge model in any formalism, although it is close to

that. Before these statements can be transformed into formalism for knowledge

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 20 of 35 Submission date: 1.4.2011

representation, IRIs have to be created. Resource identificators are needed, to differentiate
the model from other models of similar devices developed elsewhere in the world.

4.1.1 Resorce identifiers

Several objects are named in the proposed example already. There are for example the
Pump, the Device and the Event. These are describing classes. IRIs will be used to create
unique names of objects. In our case that will be done by using the IRI:

http://ebbits.eu/Device.owl#

This first part of the IRI is called a namespace identifier. This has to be used in front of the
each new object name we create, to get fully qualified IRI of such an object. Sometimes it is
expected, that the model will be too complex even inside one application, like it is in our
example, so the user can create different prefixes for particular groups of objects. We will use
the

http://ebbits.eu/Event.owl#

for the event related objects and the
http://ebbits.eu/Unit.owl#

for the unit related objects.
The usage of IRIs is usually further simplified by using prefixes. Thus we can for example

define, that the
event:

prefix will be used instead of
http://ebbits.eu/Event.owl#

Usage of IIRs and corresponding prefixes can be seen in the following examples and in the
Annex of this deliverable.

4.1.2 Textual representations comparison

Let‘s see now, how the model is represented in various formalisms using the proposed names
and IRIs. For comparison, we will show only a small fragment describing the Device in different
formalisms. We will define, that a Pump is a subclass of a Device, the WaterPump1 is an
instance of the Pump and the observesProperty is a property of Event with ObservedProperty
as its range. In RDF/XML the definition looks like:

 <owl:Class rdf:ID="Pump">

 <rdfs:subClassOf rdf:resource="#Device"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="Event.owl#observesProperty">

 <rdfs:domain rdf:resource="Event.owl#Event"/>

 <rdfs:range rdf:resource="Event.owl#ObservedProperty"/>

 </owl:ObjectProperty>

 <owl:NamedIndividual

rdf:about="http://ebbits.eu/Device.owl#WaterPump1">

 <rdf:type rdf:resource="http://ebbits.eu/Device.owl#Pump"/>

 <hasEvent

rdf:resource="http://ebbits.eu/Event.owl#EnergyConsumptionEvent1"/>

 <hasEvent

rdf:resource="http://ebbits.eu/Event.owl#WaterFlowEvent1"/>

 </owl:NamedIndividual>

In OWL/XML we should write:
 <Declaration>

 <Class IRI="#Pump"/>

 </Declaration>

 <SubClassOf>

 <Class IRI="#Pump"/>

 <Class IRI="#Device"/>

 </SubClassOf>

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 21 of 35 Submission date: 1.4.2011

 <ObjectPropertyDomain>

 <ObjectProperty IRI="#hasEvent"/>

 <Class IRI="#Device"/>

 </ObjectPropertyDomain>

 <ClassAssertion>

 <Class IRI="#Pump"/>

 <NamedIndividual IRI="#WaterPump1"/>

 </ClassAssertion>

 <ObjectPropertyAssertion>

 <ObjectProperty IRI="#hasEvent"/>

 <NamedIndividual IRI="#WaterPump1"/>

 <NamedIndividual abbreviatedIRI="event:WaterFlowEvent1"/>

 </ObjectPropertyAssertion>

 <ObjectPropertyAssertion>

 <ObjectProperty IRI="#hasEvent"/>

 <NamedIndividual IRI="#WaterPump1"/>

 <NamedIndividual abbreviatedIRI="event:EnergyConsumptionEvent1"/>

 </ObjectPropertyAssertion>

In the Functional OWL the definition is much shorter:
Declaration(Class(:Pump))

SubClassOf(:Pump :Device)

Declaration(ObjectProperty(:hasEvent))

ObjectPropertyDomain(:hasEvent :Device)

ObjectPropertyRange(:hasEvent event:Event)

ClassAssertion(:Pump :WaterPump1)

ObjectPropertyAssertion(:hasEvent :WaterPump1

event:EnergyConsumptionEvent1)

ObjectPropertyAssertion(:hasEvent :WaterPump1 event:WaterFlowEvent1)

In the Manchester OWL Syntax the definition is also quite short:

Class: Pump

 SubClassOf:

 Device

ObjectProperty: hasEvent

 Domain:

 Device

 Range:

 event:Event

Individual: WaterPump1

 Types:

 Pump

 Facts:

 hasEvent event:WaterFlowEvent1,

 hasEvent event:EnergyConsumptionEvent1

Turtle notation of the same element will look like:
:Pump a owl:Class ;

 rdfs:subClassOf :Device .

:hasEvent rdf:type owl:ObjectProperty ;

 rdfs:domain :Device ;

 rdfs:range <http://ebbits.eu/Event.owl#Event> .

:WaterPump1 rdf:type :Pump , owl:NamedIndividual ;

 hasEvent <http://ebbits.eu/Event.owl#EnergyConsumptionEvent1> ,

 <http://ebbits.eu/Event.owl#WaterFlowEvent1> .

The N-Triple notation to express the same is:
<http://ebbits.eu/Device.owl#Pump>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://www.w3.org/2002/07/owl#Class> .

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 22 of 35 Submission date: 1.4.2011

<http://ebbits.eu/Device.owl#Pump>

 <http://www.w3.org/2000/01/rdf-schema#subClassOf>

 <http://ebbits.eu/Device.owl#Device> .

<http://ebbits.eu/Device.owl#hasEvent>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://www.w3.org/2002/07/owl#ObjectProperty> .

<http://ebbits.eu/Device.owl#hasEvent>

 <http://www.w3.org/2000/01/rdf-schema#range>

 <http://ebbits.eu/Event.owl#Event> .

<http://ebbits.eu/Device.owl#hasEvent>

 <http://www.w3.org/2000/01/rdf-schema#domain>

 <http://ebbits.eu/Device.owl#Device> .

<http://ebbits.eu/Device.owl#WaterPump1>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://ebbits.eu/Device.owl#Pump> .

<http://ebbits.eu/Device.owl#WaterPump1>

 <http://ebbits.eu/Device.owl#hasEvent>

 <http://ebbits.eu/Event.owl#WaterFlowEvent1> .

<http://ebbits.eu/Device.owl#WaterPump1>

 <http://ebbits.eu/Device.owl#hasEvent>

 <http://ebbits.eu/Event.owl#EnergyConsumptionEvent1> .

OBO 1.2 OWL can describe the same in the following:

[Term]

id: Pump

name: Pump

is_a: Device

[Typedef]

id: hasEvent

name: hasEvent

domain: Device

range: Event

is_metadata_tag: false

[Instance]

id: WaterPump1

name: WaterPump1

instance_of: Pump

property_value: hasEvent WaterFlowEvent1

property_value: hasEvent EnergyConsumptionEvent1

As we can see, the closer the syntax of ontologies to the XML, less human user friendly

it is. It does not necessarily mean that the XML is a not human friendly formalism (it also was
developed to be a human-also readable formalism, but not so much human understandable).

It only is used for ontology representation in a quite complicated way. Nevertheless, what we
can say is that we can use any of these for describing a simple knowledge model. For simple
ontologies, or for an early development stage of more complex models, notations optimised for
human are best suitable. Several syntaxes are subsets of each other and can be used for
expressing only particular subset of possible relations. More about expressivity of these has
been written in previous chapters. If knowledge designer encounters an expressivity limitation
of some formalism, it is possible to upgrade it to a higher-level language quite easily.

When it comes to a growing complexity and amount of represented knowledge, even
the user-friendly formalisms become hard to read and understand by a human. To have a
clearer idea, what we mean by complexity, let‘s see what our ontology, with all the relations
from the beginning of this chapter, will look like in one of the user-friendly notations – in the
Manchester OWL Syntax. In the ANNEX 1 of this deliverable we can see two-page listing of
our very simple ontology. So everyone can imagine how long such a listing can be for only a
few tens of different devices. Ontology editor tools with graphical ontology visualisation can

help human in a complex knowledge model manipulation.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 23 of 35 Submission date: 1.4.2011

4.1.3 Visualisation of ontology

In Figure 3 and Figure 4 we can see some popular ontology editors and their approach
to the visualisation of the example ontology.

Figure 3 Device Ontology example visualisation in Protégé

In both cases the visualisation is a graph-like representation, with nodes representing classes
and edges or lines between them representing properties. This helps user to overview and
browse the ontology. Another commonly used way of browsing the ontology quickly can be
seen on both images on the left side of the interface. It is a tree representation of so called ―is-
a relation‖, where sub nodes represent more specific versions of parent nodes. The ―is-a
relation‖ has a special purpose in ontologies, as it is used for inheritance between objects. It is

a very common error to mix the ―is-a‖ relation with a ―part of‖ relation. The easiest way to
overcome such a mistake is to say, ―leaf-node is a parent-node‖ for any new nodes when
constructing a model. In our ontology, for example, we can say, ―Pump is a Device‖. A pump
valve for example cannot be a sub-node of the Pump node in the is-a tree, as it is not true,
that ―Pump valve is a Pump‖. However, we can of course have the ―part-of‖ relation among
other properties in the ontology.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 24 of 35 Submission date: 1.4.2011

Figure 4 Device Ontology example visualisation in TopBraid

When editing ontologies, user uses another common ontology tool. It is a more or less
standardized form structure to edit object properties. To modify the ObservedProperty concept
in the example ontology, user uses very similar forms in different ontology tools (Figure 5).

Figure 5 Editing ontology object properties in a form (Protege on the left, TopBraid on the right)

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 25 of 35 Submission date: 1.4.2011

4.1.4 Query formalisms

Now, when we have the example ontology prepared, where the device description is stored,
knowledge can be retrieved from it. Let‘s assume, there is a large set of devices already in the
ontology and we need to address a particular device in some application. Here are some
example queries in SPARQL language to do that:

List all devices, on which an event can be triggered to observe the ActualWaterConsumption
property:

select ?device where {

?device device:hasEvent ?event.

?event event:observesProperty event:ActualWaterConsumption.

}

List al events of Pumps measuring Property in l/h

select ?event where {

?device device:hasEvent ?event.

?device rdf:type device:Pump.

?event event:observesProperty ?result.

?result event:hasUnit unit:LiterPerHour1.

}

We can see, that these queries are very similar to the original RDF representation. The RDF is
close to human understanding as it is based on Semantic networks, which can be used for
natural language processing. Thus queries (questions) in the SPARQL are easy to formulate for
a human user. However, even with SPARQL, queries (and especially the process of its
construction) can become a complex task, if ontology is huge. For that reason, graphical tools

for query formulation comes handy. These use the same approach as editors for ontologies.
The user can easily browse ontologies to find corresponding objects, combine them into a
query and then try to execute constructed queries to continuously check results on the go. An
example of simplified QUERY editor from the Hydra project is in Figure 6.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 26 of 35 Submission date: 1.4.2011

Figure 6 Query editor for the LinkSmart device ontology

If we accept the fact that the SPARQL is equally powerful as the SQL for solving problems, we
can say that with semantic technology we have the tool by means of which it is easier to

formulate queries, but still of the same power as any of the database systems. Here comes the
question of scalability of the triple stores in comparison to very advanced commercial database
systems. We tried to answer this question in the D4.1 report. We have shown there that there
are several solutions available for a scalable knowledge stores that can be used via predefined
interfaces; however all of these are still in the development phase. We should build our system
in such a way that it will be modular enough to be able to switch to a different triple store with
a minimal effort if needed.

4.1.5 Semantic web services formalisms

To demonstrate differences among the above-mentioned formalisms for semantic descriptions
of web services (cf. section 3.9), a sample web service will be annotated by the concepts taken
from the Device.owl ontology, as it was designed in the previous subsections. Assume that
there exists a web service that provides an analysis of key performance indexes. For the sake

of simplicity, let us assume that the service is atomic one and has three input parameters –
observed property, due date and unit.

The SAWSDL representation of the service is presented in the following listing. The original
WSDL description is enhanced by the sawsdl:modelReference elements (marked in bold font),
which provide a reference to respective ontology concepts for specified input parameters of the
web service:

<wsdl:description

 targetNamespace="http://ebbits.eu/wsdl/AnalysisRequestService/"

 xmlns="http://ebbits.eu/wsdl/AnalysisRequestService/"

 xmlns:wsdl="http://www.w3.org/ns/wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

 <wsdl:types>

 <xsd:schema targetNamespace="http://ebbits.eu/wsdl/AnalysisRequestService">

 <xsd:element name="AnalysisRequestServiceRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="observedProperty" type="xsd:string"

sawsdl:modelReference="http://ebbits.eu/onto/DeviceOntology#ObservedProperty"/>

 <xsd:element name="date" type="xsd:dateTime"

sawsdl:modelReference="http://ebbits.eu/onto/DeviceOntology#DueDate"/>

 <xsd:element name="unit" type="xsd:string"

sawsdl:modelReference="http://ebbits.eu/onto/DeviceOntology#Unit"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="AnalysisRequestServiceResponse" type="analysisResult"/>

 <xsd:simpleType name="analysisResult"

sawsdl:modelReference="http://ebbits.eu/onto/DeviceOntology#AnalysisResult">

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:schema>

 </wsdl:types>

 <wsdl:interface name="AnalysisRequestService">

 <wsdl:operation name="AnalysisRequestOperation"

pattern="http://www.w3.org/ns/wsdl/in-out">

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 27 of 35 Submission date: 1.4.2011

 <wsdl:input element="AnalysisRequestServiceRequest"/>

 <wsdl:output element="AnalysisRequestServiceResponse"/>

 </wsdl:operation>

 </wsdl:interface>

</wsdl:description>

The OWL-S representation is provided in a form of OWL ontology, which models the service
instance, service profile, process model with data flow, grounding instances, and WSDL
definitions for grounding. The process model example for the web service of requesting the
analysis of key performance indexes could be as follows:

<process:AtomicProcess rdf:ID="AnalysisRequestService">

 <process:hasInput>

 <process:Input rdf:ID="ObservedProperty">

 <process:parameterType rdf:resource="&xsd;#string"/>

 </process:Input>

 </process:hasInput>

 <process:hasInput>

 <process:Input rdf:ID="DueDate">

 <process:parameterType rdf:resource="&xsd;#dateTime"/>

 </process:Input>

 </process:hasInput>

 <process:hasInput>

 <process:Input rdf:ID="Unit">

 <process:parameterType rdf:resource="&xsd;#string"/>

 </process:Input>

 </process:hasInput>

 <process:hasPrecondition rdf:resource="#OPisActEnConsumption"/>

 <process:hasPrecondition rdf:resource="#UnitisWPH"/>

The WSMO framework provides native WSML format for semantic description of web services,
which enables introducing conditional statements, variables, and other specific elements into
preconditions, post-conditions, effects, and other parts of the service representation. The
sample web service, presented below in WSML, contains precondition constraints on input
parameters in the capability specification:

namespace {_"http://ebbits.eu/wsdl/AnalysisRequestService#",

 do _"http://ebbits.eu/onto/DeviceOntology#",

 dc _"http://purl.org/dc/elements/1.1#"}

webService _"http://ebbits.eu/wsdl/AnalysisRequestService"

importsOntology _"http://ebbits.eu/onto/DeviceOntology"

capability AnalysisRequestCapability

 sharedVariables {?observedProperty, ?unit}

 precondition

 nonFunctionalProperties

 dc#description hasValue "A textual description of the web service for

the analysis request."

 endNonFunctionalProperties

 definedBy

 ?observedProperty memberOf do#ActualEnergyConsumption

 and

 ?unit hasValue do#WattPerHour1

interface

 choreography AnalysisRequestChoreography

 orchestration AnalysisRequestOrchestration

The formats for semantic annotation of web services differ in the level of expressiveness and
means of combining processes into complex workflow structures. The WSMO framework was

designed in years 2004-05 specifically for modelling and maintaining semantic web services

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 28 of 35 Submission date: 1.4.2011

(deBruijn et al. 2005). It is, however, still in a pre-mature state, currently available only in
version 0.8. The SAWSDL and OWL-S technologies are more stable and proven by numerous
applications in practice. Both of them are constructed as semantic extensions on an existing
WSDL; however, the support for workflow structures and complex service

orchestration/choreography constructs is less advanced as it is in WSMO. Selection of a proper
formalism and framework for semantic annotation of web services, which will be most suitable
for ebbits purposes, should be driven by its compatibility with the LinkSmart environment,
which will be investigated later in the WP4 in more details.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 29 of 35 Submission date: 1.4.2011

5. Conclusion

Based on the knowledge representations state of the art analysis and the ebbits use cases
analysis, we can postulate that the following recommendations will be used in the process of
development of knowledge models in the ebbits project:

1. RDF/OWL knowledge representation is the choice of the ebbits project, as it is the most
widely accepted format for a knowledge sharing.

2. As it is possible to migrate from a simple to more complex formalism we will use as
simple formalisms as possible in the process of the knowledge modelling. We will start
with user-friendly notations of the RDF and move to the OWL if needed.

3. Ontologies will use predefined IRI namespaces. These will be based on the project
prefix:
http://www.ebbits-project.eu/ontologies

or on user partners company prefixes, if requested.
4. Ontologies will be shared among partners via SVN in XML based RDF/OWL syntaxes
5. If ontologies are shared among users, visual explanations will be used as well using

ontology graphical visualisation tools of a common choice.

6. Semantic web service formalisms are incompatible between each other and cannot be
easily transferred from one to another. Web service formalisms have to be further
investigated in WP4 and the most suitable formalism needs to be selected.

7. The need for development of simplified ontology and query manipulation tools will be
considered within the project. The existing open source tools will be used, if possible.

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 30 of 35 Submission date: 1.4.2011

6. References

(Al-Masri and Mahmoud 2008) Al-Masri, E., Mahmoud, Q. H.: Investigating Web Services
on the World Wide Web. In: Proceedings of the 16th international
conference on World Wide Web, ACM New York, 2008, pages 795-804.

(Alonso et al. 2008) Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts,
Architectures and Applications. Springer, 2004, 354 p.

(Baader et al. 2003) Baader, F., Calvanese, D., McGuinness D., Nardi D., and Patel-Schneider
P.F., editors (2003). The Description Logic Handbook: Theory,
Implementation and Applications, 2003.

(Bechhofer et al. 2004) Bechhofer, S., Harmelen, S. V., Hendler, J., Horrocks, I.,
McGuinness, D.L., Patel-Schneider, P.F., and Stein, L.A.(2004). OWL Web
Ontology Language Reference. W3C Recommendation. Available at
http://www.w3.org/TR/owl-ref/. World Wide Web Consortium, Feb. 2004

(Berners-Lee, Hendler and Lassila 2001) Berners-Lee, T., Hendler, J., and Lassila, O.(2001).
―The Semantic Web.‖ In: Scientific American 284 (May 2001), pages 29–
37.

(Berners-Lee et al. 2005) Berners-Lee, et al., Standards Track, RFC 3986, URI Generic
Syntax, January 2005, Available at http://tools.ietf.org/html/rfc3986.

(Bikakis et al. 2009) Bikakis N., Tsinaraki C., Gioldasis N., Christodoulakis S.: "Querying XML
Data with SPARQL". 20th International Conference on Database and
Expert Systems Applications (DEXA'09).

(Brachman 1983) Brachman, R. J.(1983). ―What IS-A Is and Isn‘t: An Analysis of
Taxonomic Linksin Semantic Networks.‖ In: IEEE Computer 16.10 (1983),

pages 30–36. issn: 0018-9162.
(Brachman and Levesque 1985) Brachman, R.J. and Levesque, H.J., editors. Readings in

Knowledge Representation. Kaufmann, M., Los Altos, 1985. isbn: 978-
0934613019.

(Brickley and Guha 2004) Brickley, D., Guha, R.V. (Editors), RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/rdf-schema/.

(Cerami 2002) Cerami, E.: Web Services Essentials. O'Reilly Media, Inc., 2002, 304 p.
(Chebotko, Lu and Fotouhi 2009) Chebotko, A., Lu, S., Fotouhi, F. : Semantics preserving

SPARQL-to-SQL translation. Data Knowl. Eng. 68, 10 (October 2009),
973-1000.

(Chinnici et al. 2007) Chinnici, R., Moreau, J-J., Ryman, A., Weerawarana, S.: Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C
Recommendation. Available at http://www.w3.org/TR/wsdl20/, World
Wide Web Consortium, June 2007.

(Clement et al. 2004) Clement, L., Hately, A., von Riegen, C., Rogers, R. (eds): UDDI
Version 3.0.2. Available at http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm. OASIS, Oct. 2004.

(Curbera et al. 2002) Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana,
S.: Unraveling the Web Services Web: An Introduction to SOAP, WSDL,
and UDDI. In: IEEE Internet Computing, Vol. 6, Issue 2, 2002, pages 86-
93.

(Dau et al. 2009) Dau, F., Hladik, J., Becker, A., Brockmans, S., Korf, R., Erdmann, M. and
Niemann, M. "D.G4.1 Modellierungsmethodik und globales semantisches
Modell", Technical report, SAP AG, ontoprise, FUB, 2009.

(Dean and Schreiber 2004) Dean, M., and Schreiber, G.(2004), Editors, OWL Web Ontology
Language Reference, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/owl-ref/.

(deBruijn et al. 2005) de Bruijn, J. et al: Web Service Modeling Ontology (WSMO). W3C
Member Submission. Available at http://www.w3.org/Submission/WSMO/,
World Wide Web Consortium, June 2005.

http://www.w3.org/TR/owl-ref/
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/wsdl20/
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://www.w3.org/TR/owl-ref/
http://www.w3.org/Submission/WSMO/

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 31 of 35 Submission date: 1.4.2011

(deBruijn et al. 2008) de Bruijn, J. et al: The Web Service Modeling Language WSML.
Available at http://www.wsmo.org/wsml/wsml-syntax, ESSI WSML
working group, 2008.

(DLP - Grosof et al. 2003) Grosof, B. N., Horrocks I., Volz R., and Decker S. (2003).

Description Logic Programs: Combining Logic Programs with Description
Logic. in Proc. of the 12th Int. World Wide Web Conference (WWW 2003),
Budapest, Hungary, 2003. pp.: 48–57:

(Elliot et al. 2009) Elliott, B., Cheng, E., Thomas-Ogbuji, Ch., and Ozsoyoglu, Z., M.: 2009.
A complete translation from SPARQL into efficient SQL. In Proceedings of
the 2009 International Database Engineering. Applications Symposium
(IDEAS '09). ACM, New York, NY, USA, 31-42.

(Farrell and Lausen 2007) Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML
Schema. W3C Recommendation. Available at
http://www.w3.org/TR/sawsdl/, World Wide Web Consortium, Aug. 2007.

(Fielding 2000) Fielding, R. T.: Representational state transfer (REST). Chapter 5 in
Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000.

(Gudgin et al. 2007) Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H.,

Karmarkar, A., Lafon, Y.: Simple Object Access Protocol (SOAP) 1.2. Part
1: Messaging Framework (Second Edition). W3C Recommendation.
Available at http://www.w3.org/TR/soap12-part1/, World Wide Web
Consortium, April 2007.

(Hayes 1979) Hayes P. J.(1979). ―The Logic of Frames.‖ In: Frame Conceptions and
Text Understanding. Edited by D. Metzing. Republished in (Brachman and
Levesque 1985). Walter de Gruyter and Co., 1979, pages 46–61.

(Herman and Horst 2005) Herman J. and Horst. J. (2005). Completeness, decidability and

complexity of entailment for RDF Schema and a semantic extension
involving the OWL vocabulary, of Web Semantics 3(2–3):79–115, 2005.

(Hitzler et al. 2009) Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.
(editors): OWL 2 Web Ontology Language: Primer. W3C
Recommendation, October 27 2009. Available at
http://www.w3.org/TR/owl2-primer/.

(Horrocks 2002) Horrocks, I.(2002). ―DAML+OIL: a Reason-able Web Ontology Language.‖
In: Proceedings of 8th Conference on Extending Database Technology.
Volume 2287. Lecture Notes in Computer Science. Springer-Verlag, 2002,
pages 2–13.

(Jordan and Evdemon 2007) Jordan, D., Evdemon, J. (TC chairs): Web Services
Business Process Execution Language. Version 2.0. Available at
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, OASIS
Standard, April 2007.

(Katifori et al. 2006) Katifori, A., Torou, E., Halatsis, C., Lepouras, G. and Vassilakis, C.: 2006.
A Comparative Study of Four Ontology Visualization Techniques in
Protege: Experiment Setup and Preliminary Results. In Proceedings of the
conference on Information Visualization (IV '06). IEEE Computer Society,
Washington, DC, USA, 417-423.

(Katifori et al. 2007) Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C. and Giannopoulou,
E.: 2007. Ontology visualization methods\—a survey. ACM Comput. Surv.
39, 4, Article 10 (November 2007).

(Kavantzas et al. 2005) Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.,
Barreto, C. (eds.): Web Services Choreography Description Language
Version 1.0. W3C Candidate Recommendation. Available at
http://www.w3.org/TR/ws-cdl-10/, World Wide Web Consortium, Nov.
2005.

(Kifer, Lausen and Wu 1995) Kifer, M., Lausen, G., Wu, J., Logical Foundations of
Object-Oriented and Frame-Based Languages, Journal of the ACM, 1995,

42, 741-843.

http://www.wsmo.org/wsml/wsml-syntax
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/owl2-primer/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-cdl-10/

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 32 of 35 Submission date: 1.4.2011

(Kostelnik, Sarnovsky and Hreno 2009) Kostelník, P., Sarnovský, M., Hreňo, J.:Ontologies in
HYDRA – Middleware for Ambient Intelligent Devices, Ambient Intelligence
and Smart Environments Volume 5, 2009, Ambient Intelligence
Perspectives II - Selected Papers from the Second International Ambient

Intelligence Forum 2009, Edited by Pavel Čech, Vladimír Bureš, Ludmila
Nerudová.

(Krötzsch, Rudolph and Hitzler 2008) Krötzsch, M., Rudolph, S., Hitzler, P. ELP: Tractable
Rules for OWL 2. In Sheth, A., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K.(2008). eds.: Proceedings of the
7th International Semantic Web Conference (ISWC-08), pp. 649–664.
Springer 2008.

(Manola and Miller 2004) Manola, F. and Miller, E., Editors, RDF Primer, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-
primer/#applications.

(Martin et al. 2004) Martin, D. et al: OWL-S: Semantic Markup for Web Services. W3C
Member Submission. Available at http://www.w3.org/Submission/OWL-
S/, World Wide Web Consortium, Nov. 2004.

(Martin et al. 2008) Martin, D. et al: OWL-S 1.2 Release. Available at

http://www.ai.sri.com/daml/services/owl-s/1.2/, OWL-S (formerly DAML-
S) Coalition, Dec. 2008.

(Minski 1981) Minsky, M.(1975). ―A Framework for Representing Knowledge.‖ In: Mind
Design. Edited by Haugeland J.(1975). A longer version appeared in The
Psychology of Computer Vision (1975). Republished in (Brachman and
Levesque 1985). The MIT Press, 1981.

(Motik, Patel-Schneider and Parsia 2009) Motik, B., Patel-Schneider, P.F., and Parsia,
B.(2009). OWL 2 Web Ontology Language: Structural Specification and

Functional-Style Syntax. W3C Recommendation. Available at
http://www.w3.org/TR/owl2-syntax/, World Wide Web Consortium, Oct.
2009.

(Motik et al. 2009) Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. eds. OWL
2 Web Ontology Language: Profiles, W3C Recommendation, 27 October
2009, http://www.w3.org/TR/owl2-profiles/.

(OWL 2009) W3C OWL Working Group, Editors, OWL 2 Web Ontology Language,
Document Overview , W3C Recommendation, 11 June 2009,
http://www.w3.org/TR/owl2-overview/.

(Papazoglou 2003) Papazoglou, M.: Service-oriented computing: concepts, characteristics
and directions. In: Proceedings of the Fourth International Conference on
Web Information Systems Engineering, 2003, pages 3-12.

(Perez, Arenas and Gutierrez 2009) Perez, J., Arenas, M. and Gutierrez, C.: 2009. Semantics
and complexity of SPARQL. ACM Trans. Database Syst. 34, 3, Article 16

(September 2009), 45 pages.
(Quillian 1967) Quillian, M. R.(1967). ―Word concepts: A theory and simulation of some

basic capabilities.‖ In: Behavioral Science 12 (1967). Republished in
(Brachman and Levesque 1985), pages 410–430.

(Reynolds 2006) Reynolds, J.: Service Orchestration vs. Service Choreography. Available
at
http://weblogs.java.net/blog/johnreynolds/archive/2006/01/service_orch
est.html, Blog posted at Java.net, Jan. 2006.

(Richens 1956) Richens, R.H.: Preprogramming for Mechanical Translation, Mechanical
Translation, Volume 3, Number 1, July 1956; p.20-25.

(Schubert, Goebel and Cercone 1979) Schubert, L. K., Goebel, R. G., and Cercone, N.
J.(1979). ―The Structure and Organization of a Semantic Net for
Comprehension and Inference.‖ In: Associative Networks: Representation
and Use of Knowledge by Computers. Edited by Findler N.V. Academic
Press, 1979, pages 121–175.

(SPARQL 2008) SPARQL Query Language for RDF, W3C Recommendation 15 January
2008, Available at http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-primer/#applications
http://www.w3.org/TR/rdf-primer/#applications
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-overview/
http://weblogs.java.net/blog/johnreynolds/archive/2006/01/service_orchest.html
http://weblogs.java.net/blog/johnreynolds/archive/2006/01/service_orchest.html
http://www.w3.org/TR/rdf-sparql-query/

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 33 of 35 Submission date: 1.4.2011

(Suntisrivaraporn 2008) Suntisrivaraporn, B.: 2008, ―Polynomial-Time Reasoning Support
for Design and Maintenance of Large-Scale Biomedical Ontologies.‖
Available at http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-
1233830966436-59282. PhD thesis. Technische Universität Dresden,

2008.
(XML 2008) Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C

Recommendation 26 November 2008, Available at
http://www.w3.org/TR/REC-xml/.

(XMLRCP 2003) XML-RPC Home Page. Available at http://www.xmlrpc.com, Scripting
News, Inc., 2003.

(WSA 2007) Web Services Activity. W3C Technology and Society domain. Available at
http://www.w3.org/2002/ws/, World Wide Web Consortium, 2007.

(WSMX 2008) Web Service Modelling eXecution environment. Available at
http://www.wsmx.org, DERI Galway and STI Innsbruck, 2008.

http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1233830966436-59282
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1233830966436-59282
http://www.w3.org/TR/REC-xml/
http://www.xmlrpc.com/
http://www.w3.org/2002/ws/
http://www.wsmx.org/

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 34 of 35 Submission date: 1.4.2011

7. ANNEX

An ebbits example ontology in the Manchester OWL Syntax:

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix: unit: <http://ebbits.eu/Unit.owl#>

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Prefix: event: <http://ebbits.eu/Event.owl#>

Prefix: : <http://ebbits.eu/Device.owl#>

Prefix: xml: <http://www.w3.org/XML/1998/namespace>

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Ontology: <http://ebbits.eu/Device.owl>

ObjectProperty: hasEvent

 Domain:

 Device

 Range:

 event:Event

ObjectProperty: event:observesProperty

 Domain:

 event:Event

 Range:

 event:ObservedProperty

ObjectProperty: event:hasUnit

 Domain:

 event:ObservedProperty

 Range:

 unit:Unit

Class: event:ObservedProperty

 SubClassOf:

 owl:Thing

Class: owl:Thing

Class: unit:Unit

 SubClassOf:

 owl:Thing

Class: Device

 SubClassOf:

 owl:Thing

Class: Pump

 SubClassOf:

 Device

Class: event:ActualWaterFlow

ebbits D4.2 Knowledge representation formalism analysis

Document version: 1.0 Page 35 of 35 Submission date: 1.4.2011

 SubClassOf:

 event:ObservedProperty

Class: event:Event

 SubClassOf:

 owl:Thing

Class: event:ActualEnergyConsumption

 SubClassOf:

 event:ObservedProperty

Individual: event:ActualWaterFlow1

 Types:

 event:ActualWaterFlow

 Facts:

 event:hasUnit unit:LiterPerHour1

Individual: WaterPump1

 Types:

 Pump

 Facts:

 hasEvent event:WaterFlowEvent1,

 hasEvent event:EnergyConsumptionEvent1

Individual: event:ActualEnergyConsumption1

 Types:

 event:ActualEnergyConsumption

 Facts:

 event:hasUnit unit:WattPerHour1

Individual: unit:LiterPerHour1

 Types:

 unit:Unit

Individual: unit:WattPerHour1

 Types:

 unit:Unit

Individual: event:WaterFlowEvent1

 Types:

 event:Event

 Facts:

 event:observesProperty event:ActualWaterFlow1

Individual: event:EnergyConsumptionEvent1

 Types:

 event:Event

 Facts:

 event:observesProperty event:ActualEnergyConsumption1

