
ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 1 of 31 Submission date: 1.4.2011

Enabling the business-based
Internet of Things and Services

(FP7 257852)

D4.3 Coverage and scope definition of a semantic knowledge
model

Published by the ebbits Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 2 of 31 Submission date: 1.4.2011

Document control page
Document file: D4.3 Coverage and scope definition of a semantic knowledge model
Document version: 1.0
Document owner: Jan Hreno (TUK)

Work package: WP4 – Semantic Knowledge Infrastructure
Task: T4.5 – Knowledge creation analysis
Deliverable type: P

Document status: approved by the document owner for internal review
 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.0 Karol Furdik (IS) 2011-04-10 Initial TOC
0.1 Martin Knechtel (SAP),

Riccardo Tomasi (ISMB) and
Mauricio Caceres (ISMB)

2011-05-09 Reorganization and first draft of section 3,
updated subsections 3.3, 3.4 and 3.5

0.2 Mauricio Caceres (ISMB) 2011-05-09 Updates in subsections on requirements
of ebbits use cases

0.3 Peter Kostelnik (TUK) 2011-05-16 Chapters 4, 5, and 6
0.4 Jan Hreno (TUK), Peter

Kostelnik (TUK)
2011-05-21 Updates in chapters 4, 5, and 6

0.5 Karol Furdik (IS) 2011-05-23 Introduction, Executive summary
0.6
0.7
1.0 Jan Hreno, Peter Kostelnik,

Karol Furdik
2011-05-29 Final corrections

2011-05-31 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Ferry Pramudianto (FIT) 2011-05-27 Result of internal review
Matts Ahlsen (CNet) 2011-05-27 Result of internal review

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 3 of 31 Submission date: 1.4.2011

Index:

1. Executive summary ... 4

2. Introduction .. 5
2.1 Purpose, context and scope of this deliverable ... 5
2.2 Background ... 5

3. Semantic aspects and requirements of ebbits use cases 6
3.1 Review of current use cases in ebbits ... 6
3.2 Requirements for semantic annotation of resources.................................... 8
3.3 Requirements for accessing semantic information11
3.4 Examples of annotation and access of semantic resources..........................15
3.4.1 Examples in the Automotive Manufacturing domain15
3.4.2 Examples in the Food Traceability domain ...16

4. Survey of semantic knowledge models usage within the ebbits project 19

5. HYDRA semantic use cases and ontologies.. 21
5.1 HYDRA ontologies ...21
5.2 Using the semantics in HYDRA ..22
5.2.1 HYDRA enabling device ...23
5.2.2 Semantic device discovery...23
5.2.3 Extending the device semantic description...24
5.2.4 Application context-awareness ...25
5.2.5 Semantic devices..25

6. Proposed HYDRA ontology extensions for ebbits use cases 27
6.1 Ebbits specific semantic use cases...27
6.1.1 Business decision models for enterprises ...27
6.1.2 Multi-sensory data fusion and context-awareness27
6.1.3 Event management and service orchestration28
6.1.4 Resource annotation and knowledge retrieval.......................................28
6.2 Extension of HYDRA ontologies for ebbits ...29
6.2.1 Reusing the HYDRA ontologies ...29
6.2.2 Ebbits specific ontologies...29

7. Conclusion ... 30

8. References... 31

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 4 of 31 Submission date: 1.4.2011

1. Executive summary

This deliverable concludes the T4.5 task of the project and can be seen as a starting point
towards the implementation of semantic structures required by ebbits pilot applications.

A detailed analysis of specified ebbits use cases with respect to the requirements on underlying
semantic knowledge model is provided in chapter 3. The requirements, which are organised in
tables of Volere style, are further supported by a set of examples that indicate the means for
OWL annotation and access of envisioned semantic resources.

The proposed semantic infrastructure, which should cover enterprise, production, and device
levels of enterprise structure, will be designed and implemented within several ebbits
workpackages. The mapping of required semantic information types to the respective
workpackages is provided in chapter 4.

The overall semantic knowledge model of ebbits will be based on the HYDRA ontology, which is
described in chapter 5. Finally, proposed updates and extensions of the HYDRA ontology, as
they were invoked by ebbits use cases, are summarised in section 6.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 5 of 31 Submission date: 1.4.2011

2. Introduction

2.1 Purpose, context and scope of this deliverable

The purpose of this deliverable is to specify the envisioned semantic knowledge model with
regard to the capabilities required by ebbits use cases. The specification is focused on a
provision of all the information that can be needed for further implementation of semantic
infrastructure in various ebbits workpackages. It namely includes the analysis of initial use
case descriptions and extraction of requirements that are relevant for the development of
semantic structures. The specified set of requirements, properly prioritised and categorised,
defines a scope of the resulting semantic knowledge model and can then serve as a validation
framework for the developers / modellers during the implementation.

The coverage of ebbits semantic infrastructure is determined by the investigations of available
technologies such as semantic stores, reasoning engines, and knowledge representation
formalisms, which were provided in previous deliverables of WP 4. The HYDRA ontology1 was
selected as the main semantic resource on which the ebbits knowledge model will be
developed. The directions and proposed means of HYDRA ontology extensions towards the
ebbits use cases, as well as a distribution of development works between particular
workpackages, is provided in the next sections of this deliverable.

2.2 Background

This deliverable is an outcome of the Task 4.5, which is specified in the ebbits Description of
Work as follows:

“This task will analyse the required scope and coverage of the semantic model, specifically for
the use cases in ebbits. Semantic interoperability of devices and information systems’
resources needs a common defined terminology. One way to provide this is to adhere to
standard interaction protocols and data formats. In fields, where such a standardisation does
not exist since interaction mechanisms and architecture is in its innovative structure not yet
covered by existing standards, a shared semantic model helps out.

Most often, an ontology is used to store a formal representation of a shared conceptualisation.
ebbits needs a semantic model in order to allow for semantic interoperability. In this task we
will analyse the required scope and size of the semantic model in order to prepare its creation
systematically. Based on the of knowledge representation formalism analysis carried out, IS
will propose coverage and scope definition of the semantic knowledge model, inputs and
comments will be provided by TUK. ISMB will contribute to the definition of solutions enabling
semantic interoperability between physical devices and information systems.”

1 The consortium of the HYDRA project decided to change the trademark name of the produced
middleware and the related ontologies to the “LinkSmart” middleware / ontology. The details
of this decision can be found at http://www.hydramiddleware.eu. Since in this deliverable we
are referring to the ontology as it was originally designed in the HYDRA project, we are using
the “older” name here.

http://www.hydramiddleware.eu

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 6 of 31 Submission date: 1.4.2011

3. Semantic aspects and requirements of ebbits use cases

The ebbits platform will allow different stakeholders in an enterprise domain to cooperate by
sharing and correlating their own information with others in order to provide traceability,
reasoning and context awareness capabilities in production environments such as
manufacturing and agriculture. To do so, a proper modelling of the information, stakeholders
and elements involved has to be performed, taking into account the knowledge representation
and reasoning adopted in ebbits.

Deliverable D4.1 introduced a state of the art on semantic stores and reasoning engines,
giving an opening overview of their possible implementation in the ebbits. In addition,
deliverable D4.2 presented in detail the state of the art of knowledge representation
formalisms, i.e. the standards used to describe semantic relationships in triple store
repositories.

This section in particular, will focus on how the proposed use cases for the ebbits platform
(introduced in deliverables D2.1 and D3.1) can be analysed in order to get some requirements
for the proper knowledge modelling and annotation of semantic resources.

3.1 Review of current use cases in ebbits

Deliverables D2.1 Scenarios for Usage of the ebbits Platform and D3.1 Enterprise Use Cases
introduced some preliminary use scenarios for the ebbits interoperability platform in two
different application areas: Automotive Manufacturing and Food Traceability. Also in
deliverable D2.4 Initial Requirements Report a first iteration on the user requirements is
presented in the above application areas, and the possible utilisation of triple stores in
relevance with the user requirements is discussed in table 8 of the same deliverable.

Such use cases can be grouped according to the specific domain they are proposed, in which
some subdomains have been already identified:

• Use cases in Automotive Manufacturing
 Usage stories (Appendix 1 of D2.1)

 6.2.1.1 Monitoring and storing data
 6.2.1.2 Checking the status of the manufacturing plant
 6.2.1.3 Sending alert to Mario
 6.3.1.1 Production optimisation

 5.2.1 Energy reduction management process (Appendix 1 of D3.1)
 5.2.1.1 Initial assessment of energy consumption
 5.2.1.2 Develop a strategy for energy reduction
 5.2.1.3 Decision about improvement of the device
 5.2.1.4 Intervention on the device
 5.2.1.5 Monitoring of the performed modification
 5.2.1.6 Decision about additional improvement

 5.2.2 Plant production shut down and restart (Appendix 1 of D3.1)
 5.2.2.1 Shut down of the plant production
 5.2.2.2 Restart of the plant production

 5.2.3 Automatic energy reduction (Appendix 1 of D3.1)
 5.2.3.1 Decision about the energy reduction

 5.2.4 Retrieve production information (Appendix 1 of D3.1)
 5.2.4.1 Filling in a form about an accident
 5.2.4.2 Collect the production data

• Use cases in Food Traceability

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 7 of 31 Submission date: 1.4.2011

 Usage stories (Appendix 2 of D2.1)
 8.2.1.1 Information about delivered feed
 8.2.1.2 Calculation production and delivery plan
 8.2.1.3 Feedstuff delivery
 8.2.1.4 Invoke information about delivered feed
 8.2.2.1 Implementation and activation of RFID tag
 8.2.2.2 Storage information about animals
 8.2.2.3 Monitoring of feeding and identification of deviations in behaviour of

animals
 8.2.2.4 Special production
 8.2.2.5 Prediction of delivery to slaughterhouse
 8.2.3.1 Animal transportation to slaughterhouse
 8.2.4.1 Receiving information about the meat
 8.2.4.2 Identification of potentially infected meat packages

 6.2.1 Field area (Appendix 2 of D3.1)
 6.2.1.1 Analyse nutrients in soil (optional)
 6.2.1.2 Analysis of the history of the land use
 6.2.1.3 Decision about the type of crops
 6.2.1.4 Decision about fertilization
 6.2.1.5 Decision about harvesting time

 6.2.3 Farm production (Appendix 2 of D3.1)
 6.2.3.1 Check conditions for production
 6.2.3.2 Decision about insemination
 6.2.3.3 Check heat
 6.2.3.4 Replace a sow
 6.2.3.5 Vaccinate
 6.2.3.6 Wean sows
 6.2.3.7 Medical intervention
 6.2.3.8 Selling pigs to slaughterhouse

 6.2.4 Slaughterhouse (Appendix 2 of D3.1)
 6.2.4.1 Specification of payment to the farm
 6.2.5.1 Order specification

• General use cases (domain/sector independent) (Section 4 of D3.1)
 Order goods or services
 Send Invoice
 Record data to the accounting system
 Send Payment
 Request for information (RFI)

These use cases will be used for drafting some semantic aspects: requirements for annotation
and access to semantic information (triple stores) in the ebbits platform. The following
subsections present these requirements in a Volere fashion.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 8 of 31 Submission date: 1.4.2011

3.2 Requirements for semantic annotation of resources

No Summary Rationale Source Fit Criteria

P
riority

R
equ

irem
en

t
Type

C
om

pon
en

ts

U
ser

Satisfaction

U
ser

D
issatisfaction

0
All stakeholders should be annotated
with unique Id, type, name and relevant
info.

It is important to recognize who is
interacting with the system, and which
privileges and restrictions has.

ALL USE CASES One or multiple directories of
stakeholders.

1

Functional

N
eutral

Very high

AUTOMOTIVE MANUFACTURING DOMAIN

A1
Monitored/sensed data should be
contextualized (timestamp, geotag,
type, etc).

It is important to know when and where
data was sensed/monitored.

6.2.1.1 Monitoring and sorting data

6.3.1.1 Production optimisation

Semantic store with knowledge model
for sensor readings.

2

Functional

Low

H
igh

A2
Monitored/sensed data should be
annotated (semantically) in local
server/repo/store.

Information relationships should be
available as soon as data enters the
ebbits system.

6.2.1.1 Monitoring and sorting data

6.3.1.1 Production optimisation

Data acquisition, annotation and storing
policy.

2

Functional

Low

H
igh

A3
Alerts should be contextualized
(timestamp, geotag, type, message,
warning level, etc).

Generated messages and alerts need to
be traceable and provide rich
information about the event detected.

6.2.1.3 Sending alert to Mario Alerting and messaging policy. 2

Functional

Low

H
igh

A4

Devices should be annotated with id,
type, name, location, and
current/historical data (status, work in
progress, consumables levels, quality
record, energy consumption, energy
profile, planned/unplanned
intervention/maintenance, fault info,
etc).

Another added value that ebbits could
introduce in enterprise domains is
efficiency tracking, which requires a
monitoring and log of several metrics in
devices/tools/machinery and resources
in general.

5.2.1.1 Initial assessment of energy
consumption

5.2.1.4 Intervention on the device

5.2.4.1 Filling in a form about an
accident

Semantic store with knowledge model
for devices.

2

Functional

H
igh

Low

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 9 of 31 Submission date: 1.4.2011

A5

Production should be annotated or
modelled in order to calculate OEE and
get number of
orders/elements/products
requested/delivered/in-progress/faulty.

Real-time traceability of produced
goods/services is achieved by properly
annotating their status and metrics
during the manufacturing process.

5.2.3.1 Decision about energy reduction

5.2.4.2 Collect the production data

Semantic store with knowledge model
for production.

1

Functional

H
igh

Low

A6

Logistic should be annotated or
modelled in order to get information
about element and consumables
(present, in transit from supplier,
ordered, etc).

The ebbits platform could provide also a
system for efficient management of
consumables and logistic aspects
needed in (not only) manufacturing
domains.

5.2.4.2 Collect the production data Semantic store with knowledge model
for logistic.

2

Functional

Low

N
eutral

FOOD TRACEABLITY DOMAIN

F1

Feedstuff should be annotated with
origin, genetics, treatment, storage
conditions and transport/delivery info
(batch number, silo id, amount,
timestamp).

A detailed annotation of feedstuff is
required to the reasoning processes
devised.

8.2.1.1 Information about delivered
feed

8.2.1.3 Feedstuff delivery

Semantic store with knowledge model
for feedstuff.

1

Functional

H
igh

Very high

F2

Animals should be annotated with RFID
tag, weight, genetics, birth date, and
current/historical (timestamped) data
(growth/weight, location/movements,
consumed feed, water, weaning,
insemination, heat during pregnancy,
born piglets, anomalies,
vaccines/treatment/medication).

Proper identification of animals and
logging the most relevant information
about their lives is vital for the
traceability and quality control proposed
in ebbits.

8.2.2.1 Implementation and activation
of RFID tag

8.2.2.3 Monitoring of feeding and
identification of deviations in behaviour
of animals

8.2.2.5 Prediction of delivery to
slaughterhouse

8.2.3.1 Animal transportation to
slaughterhouse

6.2.3.2 Decision about insemination &
6.2.3.3 Check heat

6.2.3.5 Vaccinate

6.2.3.6 Wean piglets

6.2.3.7 Medical intervention

6.2.3.8 Selling pigs to slaughterhouse

Semantic store with knowledge model
for animals. Logging policy.

1

Functional

H
igh

Very high

F3 Meat packages should be annotated
with ID of animal (for trace).

Meat traceability is one of the main
added values of the ebbits platform in
the agricultural domain.

8.2.4.2 Identification of potentially
infected meat packages

Semantic store with knowledge model
for animals.

2

Functional

Low

H
igh

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 10 of 31 Submission date: 1.4.2011

F4

Farm's soil/fields should be annotated
with location, laboratory analysis info
(date, sample field source, lab id/name,
results, etc), current/historical data
(types of crops, grain maturity, soil
nutrients, quality of products grown,
etc).

Different reasoning applications devised
in ebbits for tracking the soil efficiency
require a detailed annotation and
logging of farms’ soil.

6.2.1.1 Analyse nutrients in soil

6.2.1.2 Analysis of the history of the
land use

6.2.1.5 Decision about harvesting time

Semantic store with knowledge model
for farm soil/fields.

2

Functional

Low

N
eutral

F5
Farm's repository should store
information about harvesting
equipment, man power, etc.

The ebbits platform would provide also
some functionalities for the
management of resources needed for
harvesting, thus they need to be
included in the knowledge model.

6.2.1.5 Decision about harvesting time Semantic store with knowledge model
for farm resources.

2

Functional

Low

N
eutral

F6

Sow farm production should be
annotated or modelled in order to allow
tracking the number of piglets, pigs at
fertile age, pigs ready to slaughter,
maximum capacity, etc.

By proper reasoning and processing, the
ebbits platform can exploit the
knowledge in the network and extract
aggregated information required in real
time.

6.2.3.1 Check conditions for production Reasoning algorithms for production
tracking.

1

Functional

N
eutral

N
eutral

F7

Halves of slaughtered pigs should be
annotated with id, id of slaughtered pig,
weight, fat thickness, date of slaughter,
price, etc.

Traceability of meat requires proper
tracking of pigs since birth to stores,
thus the information after its slaughter
is very relevant.

6.2.4.1 Specification of payment to the
farm

Semantic store with knowledge model
for halves of slaughtered pigs.

1

Functional

H
igh

N
eutral

ENTERPRISE DOMAIN

E1
Order should be annotated with type/ID
of good/service, amount, price,
dates(issue, expiry, delivery, etc).

Ebbits platform can be exploited also for
generic enterprise processes, like
account management.

Order goods Semantic store with knowledge model
for orders.

3

Functional

N
eutral

N
eutral

E2

Invoices should be annotated with
supplier's info (name, id, bank account,
contacts, etc), goods or services info
(type/id, amount, price, dates, etc).

Ebbits platform can be exploited also for
generic enterprise processes, like
account management.

Send invoice & Record data to the
accounting system

Semantic store with knowledge model
for invoices.

3

Functional

N
eutral

N
eutral

E3
Payment reports should be annotated
with responsible id/name, bank, order
number, status, etc.

Ebbits platform can be exploited also for
generic enterprise processes, like
account management.

Send payment Semantic store with knowledge model
for payments.

3

Functional

N
eutral

N
eutral

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 11 of 31 Submission date: 1.4.2011

E4
Generic Information should be
annotated with requester, sender,
content (price, capacity, dates), etc.

Information exchanged between
stakeholders could be exploited for
some reasoning, thus it is convenient to
model it semantically.

Request for information Knowledge model for information
exchange.

3

Functional

N
eutral

N
eutral

3.3 Requirements for accessing semantic information

No Summary Rationale Source Fit Criteria

P
riority

R
equ

irem
en

t
Type

C
om

pon
en

ts

U
ser

Satisfaction

U
ser

D
issatisfaction

0

Stakeholders should be stored in local
catalogues or external directories
(advisory company, chamber of
commerce, etc) and accessed by the
different subsystems inside and outside
ebbits.

In order to apply access control
lists/policies, all stakeholders must be
identified.

ALL USE CASES Stakeholder directories. 1

Functional

N
eutral

Very high

AUTOMOTIVE MANUFACTURING DOMAIN

A1
Manufacturing Monitor System should
have write access to local
server/repo/store.

The reasoning processes devised in
ebbits require access to
knowledge/information found in local
stores.

6.2.1.1 Monitoring and sorting data. Access rules/policy granted for MMS. 1

Functional

Low

H
igh

A2
Manufacturing System for Analysis
should have read/write access to local
server/repo/store.

Analysis/reasoning is based on local
monitored data, and reports are sent
back to local server/repo/store.

6.2.1.1 Monitoring and sorting data. Access rules/policy granted for MMS. 1

Functional

Low

H
igh

A3 Reports should have a list of allowed
readers/subscribers.

Aggregated data, reports, alerts, etc,
should be available only to stakeholders
interested in them.

6.2.1.2 Checking the status of the
manufacturing plant.

Access rules/policy for generation/reading
of reports.

2

Functional

H
igh

Very high

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 12 of 31 Submission date: 1.4.2011

A4 ebbits platform should have a list of
alerts and subscribers.

The different monitored processes in
ebbits should generate alerts and send
them to the interested subsystems or
stakeholders.

6.2.1.3 Sending alert to Mario Directory of alerts/events. 2

Functional

N
eutral

H
igh

A5
Manufacturing Monitor System must
have read access to internal and
external environment data.

The reasoning processes devised by
ebbits for the manufacturing domain
require environmental monitoring.

6.3.1.1 Production optimisation Internal/external sensors collected and
annotated in respective repositories.

3

Functional

Low

Low

A6

Maintenance Manager and operators
should have access to devices' and
production info (proper ACL have to be
implemented)

Some of the added values that ebbits will
provide to managers in the
manufacturing domain require a
continuous tracking of the production
processes, metrics and modifications
introduced.

5.2.1.1 Initial assessment of energy
consumption

5.2.1.5 Monitoring of the performed
modification

5.2.1.6 Decision about additional
improvement

5.2.3.1 Decision about the energy
reduction

5.2.4.1 Filling in a form about an accident

5.2.4.2 Collect the production data

Stakeholders access policies for readings,
devices and production.

1

Functional

H
igh

Low

FOOD TRACEABLITY DOMAIN

F1

Farm's Management System should
have access (through secure
connection) to Feed Provider Resources
Monitoring System.

The food traceability scenario requires an
exchange of information between all the
enterprises involved in the production
chain.

8.2.1.1 Information about delivered feed

8.2.1.2 Calculation production and
delivery plan

8.2.1.4 Invoke information about
delivered feed

Authenticated/secure access to Feed
Provider RMS.

2

Functional

N
eutral

Low

F2 Feed Provider should transfer delivery
information about sent feedstuff.

The traceability relays on the successful
exchange of information about the
monitored processes linked to the tracked
product.

8.2.1.3 Feedstuff delivery
Interface/procedure for
request/receive/exchange of relevant
information about deliveries.

1

Functional

H
igh

N
eutral

F3
Farm's Local server/repo should be
accessible by RFID tag readers and
National servers/repos/stores.

Information about animals is stored in
farm local servers and used to retrieve
information when reading RFID tags or
when requested by National/European
authorities.

8.2.2.2 Storage information about
animals Access policies to local server. 1

Functional

Low

H
igh

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 13 of 31 Submission date: 1.4.2011

F4 Farm's Monitoring System should have
access to local server/repo/store.

Monitoring system keep track of several
process in the farm and needs the
metadata stored in local server.

8.2.2.3 Monitoring of feeding and
identification of deviations in behaviour of
animals

8.2.2.5 Prediction of delivery to
slaughterhouse

Access policies to local server. 1

Functional

Low

N
eutral

F5

Farm's Management Application Server
should access local monitoring system
servers/repos/stores for generation of
reports.

Management/accounting systems
perform their tasks based on the
information stored/provided by local
monitoring systems.

8.2.3.1 Animal transportation to
slaughterhouse

Access policies to local monitoring
system.

2

Functional

Low

N
eutral

F6 Consumer should have access to meat
reports.

Relevant reports about the produced
meat since the piglet born will be used by
ebbits in order to enhance the
information provided to consumers about
the meat they are buying.

8.2.4.1 Receiving information about the
meat Access policies to production reports. 2

Functional

H
igh

N
eutral

F7 Controller should have access to
(online) queries to meat packages IDs.

Quality and health control authorities can
rely on ebbits in order to track the
distribution of meat packages when they
discover some anomaly.

8.2.4.2 Identification of potentially
infected meat packages Access policies to production reports. 1

Functional

Low

Very high

F8 Farm's Management System should
have access to field info repository.

Optimisation of the resources, like fields
in an agricultural domain can be achieved
by analyzing and processing information
logged by their respective monitoring
systems.

6.2.1.2 Analysis of the history of the land
use

Access policies to historical info by Farm’s
MS.

2

Functional

N
eutral

Low

F9

Farm's Management System should
have access to external information
(crop price, fertilizers price,
consumables price, weather, etc).

Consumables information can be
exploited through ebbits in order to
manage efficiently the farm’s production
processes.

6.2.1.3 Decision about the type of crops

6.2.1.4 Decision about fertilization

6.2.1.5 Decision about harvesting time

Access to external/providers information. 3

Functional

Low

Low

F10
Sow Farm Management System should
have access to production/animal
repository.

The knowledge obtained by tracking all
production processes in the farm will
allow managers to optimise them through
a single platform.

6.2.3.1 Check conditions for production

6.2.3.2 Decision about insemination

6.2.3.3 Check heat

6.2.3.5 Vaccinate

6.2.3.6 Wean piglets

6.2.3.7 Medical intervention

6.2.3.8 Selling pigs to slaughterhouse

Access policies to local server/repo/store. 2

Functional

Low

neutral

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 14 of 31 Submission date: 1.4.2011

F11

Slaughterhouse Management System
and Retail Management System should
have access to both production (read)
and slaughter (write) repositories.

Accounting though ebbits will be
simplified thanks to the knowledge
acquired by multiple systems in the food
production chain.

6.2.4.1 Specification of payment to the
farm

6.2.5.1 Order specification

Access policies to production and
slaughter servers/repos/stores.

3

Functional

Low

Low

ENTERPRISE DOMAIN

E1

Accounting Management System should
store orders, and have access to
Supplier Management System (to
send/receive orders/acks/invoices).

The ebbits paradigm can be exploited
also for improving the efficiency of
accounting task.

Order goods

Send invoice
Access policies to Supplier MS. 3

Functional

N
eutral

N
eutral

E2

Accounting Management System should
have access to bank's management
system for sending/receiving payment
orders/confirms.

The ebbits paradigm can be exploited
also for improving the efficiency of
accounting task.

Send payment Access policies to Banks’ MS. 3

Functional

N
eutral

N
eutral

E3
Manager should have access to
directory of stakeholders to interact
with them (send/receive info).

The ebbits paradigm can be exploited
also for improving the efficiency of
accounting task.

Request for information Access policies to Stakeholders directory. 3

Functional

N
eutral

N
eutral

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 15 of 31 Submission date: 1.4.2011

3.4 Examples of annotation and access of semantic resources

In this section some examples of semantic annotation are presented in order to give a general
idea of how the above requirements could be translated in semantic models of different
resources.

3.4.1 Examples in the Automotive Manufacturing domain

Example RDF for a device/tool/machinery used in production
@prefix : <http://www.example.org/sample.rdfs#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:Device rdf:type rdfs:Class;
 rdfs:subClassOf :Machine.

:hasId rdf:type rdf:Property;
rdfs:domain :Device;
rdfs:range xsd:integer.

:hasType rdf:type rdf:Property;
rdfs:domain :DeviceTypes;
rdfs:range :DeviceTypes.

:hasName rdf:type rdf:Property;
rdfs:domain :Device;
rdfs:range xsd:string.

:hasLocation rdf:type rdf:Property;
rdfs:domain :Device;
rdfs:range : GeoTag.

:hasLog rdf:type :DeviceStatus;
rdfs:domain :Device;
rdfs:range :DeviceStatus.

:log1 rdf:type : DeviceStatus ;
 :hasTimestamp "2011/06/01 13:24:56"^^xsd:datetime;
 :hasStatus "Off"^^xsd:string;
 :hasWorkInProgress :Piece;
 :hasConsumablesLevels "0.5"^^xsd:float;
 :hasQualityRecord "Good"^^xsd:string;
 :hasEnergyConsumption "Good"^^xsd:string;
 :hasEnergyProfile "SaveMode"^^xsd:string;
 :

:

:logN rdf:type :DeviceStatus;
 :

http://www.example.org/sample.rdfs#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 16 of 31 Submission date: 1.4.2011

Example RDF for a piece in production
@prefix : <http://www.example.org/sample.rdfs#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:Piece rdf:type rdfs:Class;
 rdfs:subClassOf :Product .

:hasId rdf:type rdf:Property;
rdfs:domain :Piece;
rdfs:range xsd:integer .

:hasType rdf:type rdf:Property;
rdfs:domain :PieceTypes;
rdfs:range :PieceTypes .

:hasStatus rdf:type rdf:Property;
rdfs:domain :Piece;
rdfs:range :GeoTag .

:hasLog rdf:type :ProductionStatus;
rdfs:domain :Piece;
rdfs:range : ProductionStatus .

:log1 rdf:type : ProductionStatus;
 :hasTimestamp "2011/06/01 13:24:56"^^xsd:datetime ;
 :hasStatus "in-progress"^^xsd:string ;
 :hasDevice :Device ;
:

:

:logN rdf:type : ProductionStatus;
 :

Example of SPARQL Query ^[Number of faulty pieces in the last month] (from use case
5.2.4.2 - Collect the production data)

PREFIX : <http://www.example.org/sample.rdfs#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT ?s WHERE {

?s :hasStatus ?a FILTER (?a = "faulty"^^xsd:string).
?m :Timestamp ?n FILTER (?n > "2011/05/01 00:00:00"^^xsd:datetime).

}

3.4.2 Examples in the Food Traceability domain

Example RDF for the pig farm
@prefix : <http://www.example.org/sample.rdfs#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:Pig rdf:type rdfs:Class;
 rdfs:subClassOf :mammal .

http://www.example.org/sample.rdfs#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
http://www.example.org/sample.rdfs#
http://www.w3.org/2001/XMLSchema#
http://www.example.org/sample.rdfs#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 17 of 31 Submission date: 1.4.2011

:hasId rdf:type rdf:Property;
rdfs:domain :Pig;
rdfs:range xsd:integer .

:hasMother rdf:type rdf:Property;
rdfs:domain :Pig;
rdfs:range :Pig .

:hasWeight rdf:type rdf:Property;
rdfs:domain :Pig;
rdfs:range xsd:integer .

:motherSince rdf:type rdf:Property;
rdfs:domain :Pig;
rdfs:range xsd:integer .

:pig1 rdf:type :Pig ;
 :hasId "1"^^xsd:integer ;
 :hasMother :pig10;
 :hasWeight "5"^^xsd:integer .

:pig2 rdf:type :Pig ;
 :hasId "2"^^xsd:integer ;
 :hasMother :pig10 ;
 :hasWeight "8"^^xsd:integer .

:pig3 rdf:type :Pig ;
 :hasId "3"^^xsd:integer ;
 :hasMother :pig11 ;
 :hasWeight "8"^^xsd:integer .

:pig4 rdf:type :Pig ;
 :hasId "4"^^xsd:integer ;
 :hasMother :pig11 ;
 :hasWeight "10"^^xsd:integer .

:pig5 rdf:type :Pig ;
 :hasId "5"^^xsd:integer ;
 :hasMother :pig11 ;
 :hasWeight "5"^^xsd:integer .

:pig10 rdf:type :Pig ;
 :hasId "10"^^xsd:integer;
 :motherSince "35"^^xsd:integer .
 :

:pig11 rdf:type :Pig ;
 :hasId "11"^^xsd:integer ;
 :motherSince "25"^^xsd:integer .

Example of SPARQL Query ^[Wean Piglets] (from use case 6.2.3.6 - Wean piglets)
PREFIX : <http://www.example.org/sample.rdfs#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT ?s WHERE {

?s :hasId ?o. ?s :hasMother ?m.
?s :isAlive ?a FILTER (?a = "1"^^xsd:boolean).

http://www.example.org/sample.rdfs#
http://www.w3.org/2001/XMLSchema#

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 18 of 31 Submission date: 1.4.2011

?m :isAlive ?b FILTER(?b = "1"^^xsd:boolean).
?s :hasWeight ?w FILTER (?w > 7).
?m :farrowedOn ?n FILTER (?n < "2011-02-15"^^xsd:date).

}

Example of SPARQL Query ^[Sell N Pigs] (from Use case 6.2.3.8 - Selling pigs to
slaughterhouse)

PREFIX : <http://www.example.org/sample.rdfs#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT ?s WHERE {

?s :hasId ?o.
{?s :hasWeight ?w FILTER (?w > 100)}

UNION
{?s :nonPregnant ?p FILTER (?p > 4)}

}
LIMIT 4

Example of SPARQL Query ^[Sell all Pigs]
PREFIX : <http://www.example.org/sample.rdfs#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT ?s ?w WHERE {

?s :hasId ?o.
{?s :hasWeight ?w FILTER (?w > 100)}

UNION
{?s :nonPregnant ?np FILTER (?np > 4)}

}

Example of SPARQL Query ^[Living Pigs]
PREFIX : <http://www.example.org/sample.rdfs#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT DISTINCT ?s WHERE {

?s :isAlive "1"^^xsd:boolean.
 }

http://www.example.org/sample.rdfs#
http://www.w3.org/2001/XMLSchema#
http://www.example.org/sample.rdfs#
http://www.w3.org/2001/XMLSchema#
http://www.example.org/sample.rdfs#
http://www.w3.org/2001/XMLSchema#

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 19 of 31 Submission date: 1.4.2011

4. Survey of semantic knowledge models usage within the

ebbits project

The ebbits project is trying to provide semantic resolution to the Internet of Things (IoT) integration in
enterprise business. It will try to focus on the selected domain and try to generalize results from these to
prepare a reusable solution. From the semantic knowledge models point of view, this bottom up approach
would require to prepare domain models for several levels of data and interactions from IoT up to inter-
enterprise communication and planning. However, several existing formal descriptions of these are already
available (ISA 88, ISA 95, FIPA ontologies, SWSDL, or several upper ontologies). Particular levels of
enterprise structure are investigated in various tasks distributed among respective ebbits workpackages.
Different data structures and relations are described for every level. These levels should better interact using
the ebbits solution. Here we summarise, where we expect semantic knowledge models to become handy in
particular workpackages.

WP2 Requirements Engineering and Validation

Generic and specific requirements elicitation is the main output of this workpackage. Performing evolutionary
knowledge models related requirements refinement will be the starting point and continuous measure for
both semantic infrastructure and knowledge models creation and population.

WP3 Enterprise Frameworks for Life-cycle Management

Here the Enterprise and Management processes are going to be described. Selected domains (Energy
efficiency in manufacturing execution and Food traceability) will be used to better generalize the industrial
processes. Semantic business decision models will be developed for executing orchestrated business
services. Ownership of the data, has to be prevailed using regulatory frameworks.

WP4 Semantic modelling and enhancement of semantic stores.

The aim of this workpackage is to provide an optimised Semantic Store capable of storing all necessary
knowledge models. The semantic store has to provide tools for semantic resolution over the knowledge. The
semantic store has to be accessible from within the ebbits platform in a uniform way.

WP5 Centralised and Distributed Intelligence

Within this workpackage the ebbits project will provide a service-oriented architecture, a context
management service framework, and define data structures, taxonomies, and ontologies for intelligent
service components. Multi-sensory fusion rules, standardisation of sensor service interfaces will be provided
also.

WP6 Mainstream Business Systems

This workpackage will provide information mapping for interoperability and integration of enterprise
systems. Original information and metadata has to be available in an appropriate and controllable way in a
distributed ebbits setup. Business rules need to be represented and executed. Query answering on business
rules has to be available. The aim will be the identifying and describing generic standards for enterprise
terminology in business processes and exchange between enterprise systems.

WP7 Event Management and Service Orchestration

Event management structure will be developed in this workpackage. Event and data structures, taxonomies,
ontologies for the service components will be defined to support service orchestration. A service ontology
with high-level concepts will be used in both development and run-time processes. Data management

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 20 of 31 Submission date: 1.4.2011

structure should provide a model driven architecture for application development and deployment. A rule
based service orchestration should allow the static or dynamic assembly of services and their execution.

WP8 Physical World Sensors and Networks

Network Management subset will be responsible for physical communication between devices, persons and
external repositories. Syntactic interoperability between heterogeneous objects will be assured by mean of
web services. Security management will be taken into an account. This level will be hidden from the
semantic level by mapping all of very specific communication and security interaction behind well defined
semantically enhanced web services.

WP9 Platform Integration and Deployment

Software Development Kit will be the main SW tool released within the project. Knowledge model
infrastructure (the storage, the reasoning and querying capabilities) will be integrated, deployed and tested
within this workpackage.

WP10 End-to-end Business Applications

Within this workpackage, ontologies will be populated for real-world examples. Domain specific business
vocabularies and context rules will be defined. Testing of the platform will be performed.

WP11 Demonstration

Demonstration activities will be used for practical testing of particular models.

WP12 Dissemination and exploitation

Contribution of project results to relevant international standardisation bodies is crucial to keep results of the
project reusable after the project. Knowledge models will be based on existing standards to ensure easier
integration and interoperability with the rest of the world.

Figure 1: Simplified ebbits-enhanced enterprise

Overall position of knowledge models in different workpackages is depicted in a simplified enterprise schema
on Figure 1. The aim is to use the ebbits middleware to enable better interaction of different levels in the
scheme.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 21 of 31 Submission date: 1.4.2011

5. HYDRA semantic use cases and ontologies

One of the goals of the HYDRA project was to develop a middleware solution for networked embedded
systems in ambient environments. The main output of the project is the middleware, which enables to
connect various heterogeneous devices providing different services and with different capabilities. HYDRA is
based on a Service-oriented Architecture (SOA) and provides an interoperable access to data, information
and knowledge across heterogeneous platforms, including web services. It combines the use of ontologies
with semantic web services, supporting thus true ambient intelligence for ubiquitous networked devices.
Based on the combination of the ontologies with the semantic web services, HYDRA introduces the Semantic
Model Driven Architecture (SeMDA) which aims to facilitate application development and to promote
semantic interoperability for services and devices. The SeMDA of HYDRA includes a set of ontologies, and
provides the set of tools, which can be used both in application design time and runtime. The ebbits project
will take the HYDRA prototype solution further and will employ the HYDRA middleware in two application
domains – manufacturing and agriculture. The ebbits platform aims to support interoperable business
applications with context-aware processing of data separated in time and space, information and real-world
events (addressing tags, sensor, actuators as services), people and workflows (operator and maintenance
crews), optimisation using high level business rules (energy or cost performance criteria). The key
requirement for the business rule execution is that the ebbits platform will be able to recognise and respond
to the physical world events. Information acquired from events in the physical world, generated by various
devices, create a basis for decision making at several levels of the ebbits architecture, including data fusion,
situation pattern recognition, complex event processing, analysis of historical data, etc.

Another general characteristics of these applications is that they need to work with a large amount of
information related to devices generating events or providing services, for further processing by event and
service orchestration, decision or business rules. In some cases it must be possible to use this information to
analyse also historical data generated by particular events. The decision making process will be supported
by a rich semantic model enabling flexible knowledge representation of all the relevant events, roles,
services and processes.

Figure 2: Illustration part of the HYDRA service ontology.

5.1 HYDRA ontologies

The most of models used in HYDRA are created as OWL-Lite [OWL, 2009] ontologies, in some cases the
OWL-DL. With respect to characteristics of the domain, the careful modelling strategy was used. The

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 22 of 31 Submission date: 1.4.2011

development of ontologies was strictly following the user and application requirements to keep them simple.
The ontologies in HYDRA are used for both static information storage and also complex query answering
purposes. This section will briefly introduce the core models used.

The HYDRA device ontology represents the concepts describing device related information, which can be
used in both design and runtime. The basic ontology is composed of several partial models representing
specific device information. The initial device ontology structure was extended from the FIPA device
ontology specification (FIPA, 2002) and the initial device taxonomy was adopted and extended from AMIGO
project vocabularies for device descriptions (AMIGO, 2006).

The core ontology contains the taxonomy of various device types and the basic device description that
includes a model and manufacturer information.

Device services are modelled in the terms of operation names, inputs and outputs (see Figure 2 for
illustration). The services are also organised into the taxonomy. The services are the basic executable and
functionality units in HYDRA. To enrich the service description, to the model of service can be annotated
several additional information, such as various capabilities, quality of service or security properties. The
model of services used in HYDRA was inspired by OWL-S ontology (OWL-S, 2004). As the OWL-S was too
exhaustive for the project purposes, the more suitable approach was to create simple and customised
ontology for service description.

Device capabilities represent the hardware properties, software description and energy profiles. The
mentioned information profiles are modelled as the static structures, where only one profile of each type can
be attached to the device.

Discovery models contain the models of all discovery information provided by low-level communication
protocols. Discovery model is mandatory and is attached to each device. The purpose of device discovery
information ability to resolve the suitable device semantic model when new device enters the HYDRA
network and is initially described only by low-level discovery information depending on communication
protocol used.

Semantic device model represent the logical aggregates of composed devices to provide more advanced
application related functionality. Semantic devices are modelled as the set of semantic services specified by
preconditions, which have to be satisfied for semantic device to be executable. The preconditions specify the
static or dynamic requirements for devices embedded in semantic device.

Application models contain the set of ontologies dedicated to various application domains. Each application
model specifies the domain entities and relations in order to achieve the context aware application
behaviour.

Quality of Service (QoS) model contains descriptions of various aspects of service quality. The high level
properties such as taxonomy of service functional capabilities (e.g. plays video or measures temperature)
are modelled. The QoS ontology contains also the specification of the lower level service properties, such as
response time, availability or reliability. QoS ontology also contains the taxonomy of various units (such as
temperature, time, pressure, currency, etc.).

Device malfunctions represent various types of errors and failures, which may occur when using the device
at runtime. For each malfunction there is a set of possible remedies in the form of text description.

Security properties specify the various security properties, such as protocols, algorithms or objectives, which
may be attached to devices or services. To describe the security properties, the third party NRL ontology
(NRL, 2007) was integrated and annotated to device ontology.

Configuration model supports the device creation using DDK tools. For each created device, the information
about the configuration and implementation files used by particular IDE are stored. These files serve as the
templates of code or IDE project files and can be reused when new similar devices are created. Another
purpose of configuration models is the support for automatic device code generation (e.g. selecting the
suitable device implementations) for the device development.

5.2 Using the semantics in HYDRA

SeMDA of HYDRA provides the set of tools helping the application developer to use any wireless or wired
device easy. All devices in HYDRA application are accessible in uniform way – as the semantic web services.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 23 of 31 Submission date: 1.4.2011

In order to achieve this, developer has to prepare all devices, which have to be used in the application, with
help of the SeMDA tools. For each device there is created the semantic description, which can be used for
device discovery, calling device services satisfying various requirements (such as suitable quality of service)
or context-aware application behaviour. This functionality is ensured by SeMDA, thus the development
process is simplified and the underlying implementation is transparent to the developer. This section will
briefly introduce the basic scenarios of using Semantic Web technologies in application design and the
runtime.

5.2.1 HYDRA enabling device

To achieve the semantic interoperability, each device in HYDRA application is exposed as the semantic web
service. This approach enables to discover and call the device services in a common way, taking advantage
of the semantic description. In application design time, each device has to be prepared for usage in HYDRA.
This process is called the HYDRA enabling of the device. Developer can HYDRA-enable a new device using
so-called device development kit (DDK). The new device is annotated to the suitable class in the device
taxonomy (e.g. mobile device) and the basic description, such as device model name and number,
manufacturer information, energy consumption profile or device discovery information is added. As the
particular devices have the different connection and communication capabilities, the service calls have to be
transformed into web service calls. For each service, the developer has to add the custom implementation.
Each service is also annotated to the suitable service taxonomy class.

Devices use various low-level communication protocols, such as ZigBee or BlueTooth. Each device,
depending on the supported communication protocol, has to be physically discovered by one of the
discovery managers. When device is physically discovered in the network, each communication protocol
provides the set of low-level device information. In order to be able to automatically discover the specific
device in the future, the low-level discovery information is stored.

The role of semantics

The whole process of device HYDRA enabling is guided by the ontology, which contains the basic device,
service taxonomies, basic device information and the models of energy consumption and low-level discovery
information. Developer browses the taxonomies provided by the ontology when selecting the suitable device
or service class. Basic information and energy consumption are entered into forms automatically generated
from the ontology. Once the device is prepared, the new ontolology instances are automatically generated
and the ontology is extended by the new device basic model. Ontology contains one instance for each
specific device model. The device ontology representation is used in runtime for device discovery, searching
for specific services or devices and for retrieving all information required for the service calls. Creating new
device introduces only basic device semantic representation, which can be later further extended. Each
device ontology instance represents the specific device model and serves as the static information template.
In runtime, when new device enters in the HYDRA network, the best matching template is identified by the
semantic discovery process, cloned and tied to the physical device. The values of the runtime instance can
change as the device changes its state variables (e.g. measured values of sensor). When physical device
leaves the network, assigned device runtime instance is removed from the ontology.

5.2.2 Semantic device discovery

When a new device enters the HYDRA network, it is discovered using one of the low-level discovery
managers dedicated to various low-level communication protocols such as Bluetooth or ZigBee. In the most
cases, the low-level discovery retrieves only weak information dependent on the particular protocol
capabilities. In runtime, this information is used to identify the corresponding semantic device model in the
ontology containing full description of device, its services and other relevant information assigned to device
model in the design time. The newly discovered device has to be semantically resolved against all templates
in the ontology. The semantic resolution is performed by comparing the actual low-level discovery
information to discovery information assigned to device ontology templates in HYDRA enabling process.

Semantic device resolution can finish with the success, when there is just one best match. In this case, the
run-rime instance of the identified ontology device template is cloned and tied with the physical device using
the HYDRA specific persistent identifier. The full device information is retrieved from the ontology and
passed to the main HYDRA application component called device application catalogue (DAC). DAC is
responsible for mediating actual information of all devices presented in the HYDRA network and for

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 24 of 31 Submission date: 1.4.2011

execution of the services. Using the device ontology representation, DAC creates the proxy transforming the
low-level protocol calls to the web service calls using the device implementation created in HYDRA enabling
process. When semantic resolution fails, that means, that there is no suitable semantic model for a device.
In this case, DAC is populated with the generic device information and the physical device has no semantic
support.

The role of semantics

Each low-level communication protocol represents the device discovery information in very different way.
Sometimes, all available device information include only device model name and number, sometimes the
various manufacturer information. In case of more sophisticated protocols, such as BlueTooth or UPnP,
there can be also available the list of services or other extending information. For each low-level discovery
information there exists the model in the ontology. The low-level discovery information is translated into the
SPARQL (SPARQL, 2007) query and the solution of semantic device resolution is transformed into the graph
matching problem. In many cases, the execution of query retrieves the more matching candidates, which
have to be further investigated by heuristically comparing possible additional information. The possible
additional information for each communication protocol are modelled in the ontology, so in the
implementation of comparison procedure there is no need to hard-code the particular comparison cases. As
the discovery information provided by communication protocols may be very different, it would be quite
difficult to design the suitable fixed data structures supporting such a information variability. The flexibility of
semantic representation and uniform information access through the graph matching is here the big
advantage.

5.2.3 Extending the device semantic description

Most of sophisticated applications working with various devices would require to search for the devices
satisfying the several requirements. For example, the application working with many sensor devices would
require to compute average energy consumption of the applicances attached to the specific type of robots in
the particular hall. Another application would need to track the water consumption of concrete type of
animals during the focused time of the day. In another case it would be required to execute the service with
the specific functionality while saving the energy consumption.

Semantic description of device models created in the HYDRA enabling process represent only the basic
information necessary for device functionality. These information can be further extended using the Eclipse
based IDE, which serves as the ontology and annotation editor. Based on most frequent application
functionality and internal HYDRA requirements, the HYDRA ontology was extended by the models of
hardware, software and energy profiles, quality of service properties and security properties. Device
ontology was also extended by properties used to annotate the extended information to device models. As in
the most cases the requirements were to search for services having several properties, the domain of
annotation properties are mostly the classes from the service taxonomy. The hardware, software and energy
consumption information are modelled as the static structures, there can be one hardware, software or
energy profile per device. There can be multiple annotations of quality of service and security properties.
Using extended semantic descriptions, the devices and services have the full semantic support and are
findable in various ways.

The role of semantics

One of the biggest advantages of semantic modelling was the absolute simplification of extension process in
ontology editor. The whole process of knowledge extension is guided by the ontology. Developer may
browse related extension information. In case of static information, such as hardware or energy profiles, the
input forms are generated automatically. In case of dynamic properties, which could be added using
annotations, the developer can browse the structure of device or service and ontology editor automatically
offers the relevant information, which can be added to the particular ontology entity. For example, for
service inputs/outputs there can be offered relevant units depending on the device type (for example, for
output parameter of temperature sensors, the editor would most likely offer the units of Celsius of
Fahrenheit). All depends on the model in the ontology. If ontologies are extended with the new domain
annotated to the device or service models, the tool automatically offers the new possibilities without any
further implementation efforts. The dynamic extension of semantic device properties creates the basis for
using the semantic web services in HYDRA. The fact, that the several application components, or in some
cases the different HYDRA applications itself, use the same domain vocabulary, leads to the semantic
interoperability at the semantic level.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 25 of 31 Submission date: 1.4.2011

5.2.4 Application context-awareness

When designing the application, in many cases it is required to create the application domain model. For
example, in the case of the home automation application (home automation was one of the HYDRA usage
scenarios), it is helpful to specify, which locations (e.g. rooms) will application have, which persons use the
application, which devices belong to specific locations or are owned by concrete persons. This way it is
possible to describe the application domain, but also to create the background knowledge for the reasoning
in the context. When working with the application domain model, sometimes it is required to specify, which
devices have to be used for certain operations (e.g. switch on the lamp besides Peter's bed in bedroom), so
it is required to address the device directly. In other cases, it is required to infer, which devices belong to
the specific context (e.g. get average temperature of thermometers in the living room).

The role of semantics

In HYDRA, the application domain models are integrated into ontologies including the properties for
annotating devices to the context entities (e.g. rooms or persons). When developer creates the application,
he or she can select, which devices will be used for context computations. These devices can be annotated
using ontology editor IDE to the relevant context entities. Then, in application logic implementation, it is
possible to call pre-implemented and parameterised ontology search services. The parameters of the query
are formulated in specific notation developed for the purposes of simplification of the query mechanism. The
query is formulated using the IDE, where developer can simply select, which parameters are searched and
which parameters should be retrieved for further processing. The IDE translates the required parameters
into the SPARQL query, which is executed against the ontology. The search methods then retrieve all
devices matching parameters to be satisfied. For each device, the result contains a set of properties to be
retrieved. In more complicated cases, developer can directly formulate the SPARQL query. Using this
approach, developer has to be aware of the ontology structure and vocabulary. Anyway, with the support of
inference mechanism, it is possible to achieve reasonably smart application behaviour already when using
really simple context models.

5.2.5 Semantic devices

Each physical HYDRA device provides a set of specific services, which can be directly used by the application
developer. For example, the thermometer may provide the device specific services, such as getTemperature
or setTemperature. The idea behind the semantic devices is to enhance the application development by
providing the application specific services. For example if there are more thermometers in the room, an
application may provide e.g. getAverageRoomTemperature or holdTemperatureAtSspecifieLevel services.
The concept of semantic devices brings the idea of specifying the application specific behaviour achieved as
the composition of several HYDRA devices organised into the complex units (Kostelnik et.al., 2008). Simply
said, semantic devices are logical aggregates of devices. Semantic devices can include both basic, but also
other semantic devices. For example, the heating system semantic device may include embedded
thermometer devices and provide the semantic services – the behaviour composed of all embedded services.
Each semantic device is defined by the set of semantic services. Each semantic service is composed by the
set of requirements in terms of preconditions. The preconditions are used in the runtime to generate the
candidates matching the specified requirements (e.g. all thermometers measuring in degrees of Celsius
located in the hall).

In design time, developer has to define and implement the semantic device services using DDK tool. In
runtime, each time the new device enters the application, the semantic devices are rediscovered and the
required devices satisfying defined preconditions are automatically tied with the semantic devices.

The implementation of semantic device is realised as the combination of statically defined devices and the
orchestration behaviour. The static definition is used only in the case, when semantic service has to work
exactly with some specific devices. But this specification does not entail any limitation for using also
orchestrated devices. For example, the developer may decide to create a specific temperature alert device
using just some selected thermometers in the room, which have to be specified (thermometers are specified
as the concrete devices – static mapping).

The more complex semantic devices may be also used as the decision units providing a specific functionality
in terms of effectiveness by some specified criteria. For example, application may use two semantic devices
capable of controlling the light in the room. One semantic device controls the lamps, another controls the
blinds. These two devices may be composed into more complex semantic device, which would be capable

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 26 of 31 Submission date: 1.4.2011

for example to save the energy. Using the specific information, the device will be able to decide, how to
perform the light control. Using more information about devices, e.g. various kinds of energy profiles,
semantic devices can be used as standalone units implemented to perform the operations while satisfying
the specified goals (e.g. energy saving). The application development can be radically simplified by reusing
the existing semantic devices adjusted for the specific environment.

The role of semantics

When developer creates the new semantic device in the DDK tool, he or she has the picture of the target
device functionality. The ontology support is useful when selecting the proper devices or services, which
should be embedded in the semantic services. Ontology driven design simplifies the whole development
process, as the ontology editor IDE provides the wide set of specific listings and views filtering the devices
by the specified requirements (e.g. quality of service). For all devices having the suitable functionality, there
is immediately accessible list of full signatures of available services. The role of developer is reduced to the
selection of proper devices and to implementation of pure logic of semantic service.

In the runtime, the presence of devices in the HYDRA network may change. When devices enter or leave the
HYDRA network, the ontology is continually queried and all affected semantic devices are rediscovered. Each
change may cause, that some of available semantic devices are disabled, some may be enabled for usage.
For more, semantic devices have to ensure the real-time orchestration of embedded devices. Each time
when semantic services are executed, the ontology has to infer the actually presented devices matching the
specified preconditions.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 27 of 31 Submission date: 1.4.2011

6. Proposed HYDRA ontology extensions for ebbits use

cases

As ebbits is based on the HYDRA middleware, all the semantic use cases provided by HYDRA will be used,
with respect to the extension of the ontologies for the ebbits purposes. This section aims to outline the use
cases and the overview of expected extensions of the HYDRA ontologies in the context of ebbits. The
proposed extensions will refer to the particular ebbits workpackages and the related parts of the HYDRA
ontologies.

6.1 Ebbits specific semantic use cases

6.1.1 Business decision models for enterprises

In ebbits there are several level of generality for the service orchestration task. At the lower level, it will be
needed to use the composition and orchestration of low level physical services and events. This problem was
partly solved also in the HYDRA middleware, but will have to be extended and implemented in ebbits. This
level of abstraction will be focused in subsection 3.1.3.

The specific case of semantic usage in ebbits is the higher level abstraction of the processes, which have to
be specified for the co-operation of enterprises at the business level. This case is solved by workpackages 3
and 6.

WP3 will deliver the models describing the management, business and industrial processes and their parts in
a general way. The processes have to be modelled in the way appropriate to be used in the decision models
and the orchestration of higher level processes.

WP6 builds on the models delivered within the WP3 and focuses on the higher level processes specific for
the enterprises. The main focus here is to identify and describe standards for enterprise terminology in
business processes and exchange between enterprise systems. Generic models provided by WP3 have to be
concretely defined with respect to the specific domain of enterprises.

The higher level of processes was not part of the HYDRA ontologies and will have to be created.

6.1.2 Multi-sensory data fusion and context-awareness

Important part of the semantic usage is the context modelling, generalisation of services & events to be
used in multi-sensory fusion and context-aware decisions. This problem was focused within the HYDRA
middleware only partly. HYDRA used the rule systems to handle the context-aware behaviour of the
applications. The context rules took the advantages of the semantic model in the terms of using the
semantic information related to the context entities of the interest and extending the knowledge about the
context entities. The problem of multi-sensory data fusion was not solved within the HYDRA.

The context-awareness and multi-sensory data fusion is the responsibility of WP5. Depending on the
decisions of technologies employed to handle these issues, the corresponding semantic models will be
created to support the infrastructure with the semantic inference and the extension of information to
improve the decision-making processes.

In this case, it is assumed that the semantic extension of context entities, such as devices, services, events,
or persons, will be provided. This leads to the creation of context-awareness supporting properties of the
relevant context entities. Another issue is also to create the domain models supporting the context. In
ebbits, comparing to HYDRA, it will be needed to create the domain models of higher level and domain
specific models of context entities. HYDRA was focused only to device and service models. Ebbits will have
to focus also the application domain elements, such as events, persons or system states. This models will
have to be prepared as generic, to be ready for extensions and specialisation for concrete application
domains.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 28 of 31 Submission date: 1.4.2011

The similar situation is expected for the problem of multi-sensory data fusion. In this case, it is expected
that the support of semantics will be realised as an extension of service and event models to provide the
inference and extending information useful for the data-fusion algorithms.

6.1.3 Event management and service orchestration

The workpackage WP7 focuses on the event management and the rule based service orchestration allowing
the static or dynamic assembly of services and their execution.

The event management in HYDRA did not rely on the semantic support of events, even though the HYDRA
ontologies contained the models of events. In the HYDRA ontologies, the event models had only the
information value for the developer, but were not actively used in the software event management. In
ebbits, the event management task is crucial and will need the full semantic support in the automatic
processing of events. The event models from HYDRA ontologies had to be abandoned and the new model of
events was created to satisfy the basic assumptions for semantic support of event management. The
prototype of semantic model of events was delivered in D7.2 Event and data structures taxonomies and
ontologies.

The problem of service orchestration was focused in HYDRA, but was solved mostly on the level of
application logic. Ebbits aims to deliver a more generic and automatic handling of composed/orchestrated
services. A solution of this problem will have to be supported also semantically, with an extension of the
models of services by the properties needed to be able to ensure the service discovery and investigation of
service inputs, outputs and other functional properties. This extension should lead to the possibility of
composing/orchestrating the services in a semi-automatic or fully automatic way, depending on the
implementation of orchestrating engine in WP7.

6.1.4 Resource annotation and knowledge retrieval

In HYDRA, the only resources used in the semantic support were the devices and services. For more, the
HYDRA application usually contained only few devices comparing to the situation, which is expected in
ebbits. In HYDRA, it was enough to hold the all models in the ontology, because thanks to the number of
used resource entities, the knowledge retrieval realised as the querying of the semantic model was still fast
enough to be suitable.

In the ebbits, it is expected to handle the hundreds of resources including devices, but also the application
specific entities, such as persons, parts of an industrial or business processes or animals. Taking into
account this situation, the approach to be selected must be different to the HYDRA. To ensure the suitable
response times of the knowledge information retrieval, it would be mostly suitable to use the semantic
repositories for holding only the semantic information, not the physical data. This leads to the approach,
where the application entities will have to be semantically annotated, but physically stored in the more
efficient way. In this case, the retrieval of the knowledge will have to be realised using the semantic
annotations between the semantic information and the related application entity.

This will most probably lead to the hybrid knowledge retrieval of information joining the semantic knowledge
and the other type of data depending on the character of the storage, where the data about the particular
entity is contained. Of course, in many cases it would be needed only to retrieve the semantic knowledge
about the particular entity using the annotation information without need of merging the information.

The solution to this problem is responsibility of WP4. The responsibility of WP4 should also be the semantic
modelling, where other workpackages deliver the models needed for semantic support specific for the
particular WP, but this models are formally created as ontologies within the WP4, to hold the process of
ontology creation on the one place.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 29 of 31 Submission date: 1.4.2011

6.2 Extension of HYDRA ontologies for ebbits

6.2.1 Reusing the HYDRA ontologies

The HYDRA device ontology represents the core device taxonomy including the sub-classed models of
devices of certain type. The core can be fully reused and continually extended and improved for the device
types to be used in ebbits. The ontology properties of devices in the taxonomy should be improved to be
specific for concrete device types making the reasoning process more efficient.

The same situation holds for the models of services. The service taxonomy can be further improved for the
ebbits use cases. For more, for the purposes of the service composition and orchestration, the HYDRA
service ontology has to be extended with the properties efficiently describing the service functional
properties and the models of inputs and outputs with association to the particular domain models. This
extension should lead to the possibility of semi-automatic or automatic service composed processes. This
extensions would also enable the more straightforward device or service discovery following the specific
application or composition requirements, mainly for the purpose of automatic service orchestration.

Device capabilities, such as software, hardware or energy (or other resources) consumption information
modelled in HYDRA ontologies can be reused as the basis of the ontology model, but have to be further
extended for the specific ebbits requirements. As ebbits aims also to address the energy (or generally
resource) consumption handling scenarios, the resource consumption models have to be further extended or
redesigned, depending on the implementation of this scenarios.

Device discovery ontologies used in HYDRA were used for identification of the proper semantic model for the
devices entering the system. When discovery was successful, the physical device was tied to the semantic
model and the device had the full semantic support providing the additional information used in several
scenarios, such as context-awareness resolution. The HYDRA semantic discovery process often used only
pure low-level information describing the particular device models and the success of semantic discovery
was often quite poor. In ebbits, the discovery models and discovery process must be further improved to
increase the success of the semantic device discovery.

Quality of service and security ontologies used in HYDRA can be reused as they are, with the several
extensions for the specific ebbits purposes.

One of the crucial part of ebbits is the event management. In HYDRA, the ontology for events was used only
for information purposes. In ebbits, the event models have to be redesigned and aligned to the
requirements of ebbits event management. The prototype of event ontology created following the basic
assumptions of event management needs was designed in the deliverable D7.2 Event and data structures
taxonomies and ontologies.

6.2.2 Ebbits specific ontologies

In HYDRA, there was not addressed the problem of managing the higher-level processes and events, such
as business rules, business/enterprise/industrial processes and their compositions. Ebbits must deliver the
semantic support for higher-level processes and events. The extension would include the general ontologies
describing the business rules, decision models and their specification to the enterprise terminology. The
models of processes must also take into account the information enabling the semantic support for business
rule execution and inter-enterprise information exchange. This models have to be further extended and
specified for the several addressed domains and applications.

Domain modelling in HYDRA was limited to the description of devices and services. Application domain
models were created just experimentally for the proof of concept implementations. In ebbits, it will be
needed to provide semantic domain modelling support to enable the specific views of devices, services and
events for various applications. For more, the ebbits introduces the models of higher-level business rules
and processes, which has to be extended and specified for particular concrete problem and application
domains. The higher-level processes include also various context entities different from devices and services,
such as persons, system states or animals. The domain models of context entities must be created in the
general way and further specified for the various context entities contained in the higher-level processes.
The particular domain models have to be further specified for the purposes of concrete applications.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 30 of 31 Submission date: 1.4.2011

7. Conclusion

TO DO: IS+TUK
Summary (e.g. a list/table) of updates on the LinkSmart/Hydra ontology.

ebbits D4.3 Coverage and scope definition of a semantic knowledge model

Document version: 1.0 Page 31 of 31 Submission date: 1.4.2011

8. References

(AMIGO, 2006) IST Amigo Project (2006). Amigo middleware core: Prototype implementation
and documentation, deliverable 3.2. Technical report, IST-2004-004182.

(FIPA 2002) FIPA Device Ontology Specification, Foundation for intelligent physical agents,
2002.

(Kostelnik et al. 2008) Kostelnik, P., Sarnovsky, M., Hreno, J., Ahlsen, M., Rosengren, P.,
Kool, P., Axling, M.: Semantic Devices for Ambient Environment
Middleware. In: EURO TrustAmi 2008, Internet of Things and Services,
Sophia-Antipolis, France 18-19 September 2008.

(NRL, 2007) Naval Research Lab. Nrl security ontology
http://chacs.nrl.navy.mil/projects/4SEA/ontology.html, 2007.

(OWL, 2009) W3C OWL Working Group, OWL 2 Web Ontology Language Document Overview,
W3C Recommendation, 2009, available at: http://www.w3.org/TR/owl2-
overview/

(OWL-S, 2004) Martin, D., et.al., OWL-S: Semantic Markup for Web Services, W3C Member
Submission, 2004, available at: http://www.w3.org/Submission/OWL-S/

(SPARQL, 2007) E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF, W3C
Proposed Recommendation, 2007.

http://chacs.nrl.navy.mil/projects/4SEA/ontology.html
http://www.w3.org/TR/owl2-
http://www.w3.org/Submission/OWL-S/

