¢ > ebbi
¢ - epoIts
Enabling the business-based
Internet of Things and Services

(FP7 257852)

D2.7.1 Lessons Learned and results of usability evaluation 1

Published by the ebbits Consortium

Dissemination Level: Public

Ml European Commission
ot Information Society and Media

**x

SEVENTH FRAMEWORK
PROGRAMME

Project co-funded by the European Commission within the 7" Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

Document version: 1.1 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

Document control page

Document file:
Document version:
Document owner:

Work package:

Task:

Document status:

1.1
In-JeT ApS

D2.7.1 Lessons Learned and results of usability evaluation 1.doc

WP2 - Requirements engineering and validation

T2.3 - Evolutionary requirements refinement
Deliverable type: R

X] approved by the document owner for internal review

X] approved for submission to the EC

Document history:

Version| Author(s) Date Summary of changes made
0.1 H. Udsen (IN-JET) 2011-07-20 | TOC
0.2 H. Udsen (IN-JET) 2011-09-07 |Lessons Learned (not validated) entered
for several WPs
0.3 A. Al-Akkad (FIT) 2011-09-15 | Additions to WP5 Lessons Learned and
Usability evaluation results
0.4 | A. Al-Akkad (FIT) 2011-09-16 | Analysis of WP5 Lessons Learned
included
0.5 A. Al-Akkad (FIT) 2011-09-16 | Corrections to section 4.4.1
0.6 H. Udsen (IN-JET) 2011-09-18 | Sections 2, 3, editing of other sections
0.62 |Y. Martin (SAP) 2011-09-19 | WP 6 section
0.7 F. Pramudianto, 2011-09-15 [M12 demo prototypes included in
A. Al-Akkad (FIT) Usability evaluation results
0.8 M. Caceres (ISMB) 2011-09-20 | Analysis of Lessons Learned for WP8
0.9 M. Knechtel (SAP) 2011-09-21 |Lessons Learned + Analysis for WP4
0.91 | M. Ahlsén (CNET) 2011-09-21 | WP7 update
0.92 |P. Kool, M. Ahlsén (CNET) 2011-09-22 | WP9 update
0.93 | P. Brizzi, M. Caceres (ISMB) [2011-09-22 | WP8 update
1.0 H. Udsen (IN-JET) 2011-09-26 | Executive summary and editing
1.1 H. Udsen (IN-JET) 2011-10-03 | Reviewer comments addressed
1.1 Final version submitted to the European
Commission
Internal review history:
Reviewed by Date Summary of comments
P. Rosengren (CNET) 2011-10-02 | Approved with comments
C. Pastrone (ISMB) 2011-09-29 | Approved with comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Document version: 1.1

Page 2 of 28

Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

Index:

1. EXeCcUtiVe SUMMAIY .uiciierianmmaamissmsssmsssmsssssssmsssmsssssssssssssssssnnssnsssnssnnssnnsnnns 4
1.1 Research and development methodologycovviiiiiiiiiii e 4
B T o] o [I =T= T 1= T 4
1.3 Usability @valuation......coiuiiiii i 5

1.3.1MONtH SIX AEMIOS ..ttt ittt i e e 5
1.3.2MONth 12 deMIOS cuii ittt it i e e e e e e e e 5

N 1 oo T [T ot o o) o L 6
2.1Purpose, context and scope of this deliverable ... 6

3. Research and Development Methodologycivcrierierieriersersassassassassasnasnass 7
3.1 Software eNgiNEEriNg PrOCESS ...uuiiiiiiitt ittt ittt it i aeae e ae e ae et aeeaeens 7
3.20verview of the iterative approachc.oviiiiiiiiiii e 7
3.3Re-engineering of reqUIr€MENES ...ooviiiiiii i i 8
3.4The ebbits approach to Lessons Learned........cooviiiiiiiiiiiiiiic e 9

3.4, 1 COl e ON e s 9
3.4, 2V erifiCalioN . e e 10
G I 1) o] =Y 1= P 10
3.4.4D0ISSEMINATION . ettt 10
G I R =T] = 11
3.4.61dentification of improvement opportunity......covvviviiiiiiiiiiii e 11

4. Lessons Learned in the First Cycle.....ccviatiiminiminmmsnmmsnmsanmsasssasssasssansannnas 12

4.1Lessons Learned iN WP 2 .o i e e 12
4.1.1Analysis of LeSSONS LearNedccuviiiiiiii i e neaas 12
4.2Lessons Learned in WP 3 .o e 12
4.2.1Analysis of LeSSONS LearnNedcouveiriieiiiie i e aee e 13
4.3Lessons Learned iN WP ... i e a e e r e e e e 13
4.3.1Analysis of LeSSONS Learnedco.vieiriiiiiiie i e 14
4.4Lessons Learned iN WP .o i 14
4.4.1Analysis of LeSSONS LearNedccviiiiiiiii i it 15
4.5Lessons Learned iN WPH ... i i 16
4.5.1Analysis of LeSSONS LearNedcuviiiiiiiiiiie i nee s 16
4.6Lessons Learned iN WP 7 ..ttt r e e e e e 16
4.6.1Analysis of Lessons Learnedccviviiiiiiiiiiiii i eas 17
4.7 Lessons Learned iN WP8 ...ttt e s e e e e e 18
4.7.1Analysis of LeSSONS LearNedcuviiiiiiiiiiie i i n v nneeas 19
4.8Lessons Learned inN WP ...t r e 21
4.8.1Analysis of Lessons Learnedccviviieiiiiiiiii i e e 21
4.9 0ther WOrK PACKageS ..vviviiii ittt sa e a s r e ae e eeanean 21

5. Results of Usability Evaluationcccecivirimisnmmsmmssmsssmsssssssmsnsssnsssnssansnnns 22

5.1 M6 DEeMO PrototyPeS .. it 22
5.1.1Automotive Manufacturing M6 Demo Prototype........ccivviiiiiiiiiiiniinnnns 22
5.1.2Food Traceability M6 Demo Prototype......cocoviiiiiiiiiiiiiiiiiii e 23
o BNC 1 @] Tl 11 1= o o P 24

5.2M12 DEMO ProtOtY PeS ottt ittt ittt e e 25
5.2.1Automotive Manufacturing M12 Demo Prototypecccoovieiiiiiiininansns 25
5.2.2Food Traceability M12 Demo Prototypecccviviiiiiiiiiiiieaens 26
ST NC 1 6o Lol LT =1 e o P 26

6. ReferenCeS ...ciiciverierieriariarsassarsassassassasssassassassassnssnssnssnssnssnssnssnssnssnsnnsannas 28

Document version: 1.1 Page 3 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

1. Executive Summary

This deliverable reports the first results of Subtask 2.3.1 Lessons Learned collection and analysis and
contains a complete list of Lessons Learned during the first iteration cycle of the ebbits project,
organised per work package.

The subsequent analysis of Lessons Learned has identified a number of relevant improvement
opportunities for the specification of requirements for the next cycles of the iterative development
process, feeding into the closely related deliverable D2.8.1 Change request and re-engineering
report 1.

1.1 Research and development methodology

Section 3 provides an overview of the research and development methodology applied in ebbits,
describing how the requirement engineering process follows the guidelines of ISO 9241-210 Human-
centred design for interactive systems.

The future use of ebbits applications will be assessed in two different domains, Automotive
Manufacturing and Food Traceability. A set of domain-specific Vision Scenarios are used to derive
technical and business oriented usage scenarios, providing the foundation for an initial set of
requirement specifications, which again contribute to the definition of the first architectural
specifications. This drives the research and development work in application implementation and
system integration, which will be conducted in four one-year iterative cycles, each resulting in a
specific prototype application.

After the successful completion of a prototype cycle, each RTD work package will analyse and report
their development results, RTD experiences, Lessons Learned in the development and integration
work, including the latest developments in technology, regulatory affairs and markets.

The Lessons Learned concept is an important part of knowledge management in this iterative
process, involving the systematic and continuous collection, indexing and dissemination of these
Lessons, which will be undertaken in WP2. The six steps of this process are collection, verification,
storage, dissemination, reuse and identification of improvement opportunity.

1.2 Lessons Learned

Section 4 contains all Lessons Learned in cycle 1 and the subsequent analysis, the outcome of which
is the identification of a number of improvement opportunities. The ensuing changes in requirements
are reported in the deliverable D2.8.1 Change request and reengineering report 1.

The Lessons Learned are reported per work package as follows:

WP2 has collected one Lesson Learned; no requirements were added, updated or deleted.
WP3 has collected three Lessons Learned; no requirements were added, updated or deleted.
WP4 has reported five Lessons Learned, resulting in the addition of five new requirements.
WP5 has reported eleven Lessons Learned, resulting in the addition of five new requirements.
WP6 has reported two Lessons Learned, with the subsequent updating of one requirement.
WP7 has collected seven Lessons Learned, resulting in the addition of six new requirements.

WP8 has reported seventeen Lessons Learned, resulting in the addition of twenty new requirements,
while two requirements have been updated.

WP9 has collected three Lessons Learned; no requirements were added, updated or deleted.
No Lessons Learned have been collected so far in WP1, WP10, WP11 and WP12.

In total, the first iteration cycle yielded 49 Lessons Learned. This has resulted in the creation of 45
new requirements and modification of four requirements. No requirements have been deleted.

Document version: 1.1 Page 4 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

1.3

1.3.1

1.3.2

Usability evaluation

Four prototypes have been demonstrated, two for each application domain, after six and twelve
months, respectively. The M6 prototypes were additional to the prototypes prescribed at the end of
each annual cycle in the Description of Work, for the purpose of familiarising developer end users
from different organisations with the test-bed environment and each other.

Month six demos

The M6 Automotive Manufacturing demo was driven by a common industrial task of spot welding
through automatic robots in automated manufacturing plants. Monitoring power and water
consumption is a first step for enabling process optimisation, accounting and analysis of key
performance indexes (e.g. OEEE).

The M6 Food Traceability demo seeks to enhance the communication workflow of medical data
between veterinarians and farmers. For the demo, the focus has been on tracing the medication of
pigs to prevent medicated animals from being sent to slaughter by mistake and ensuring that it can
be traced back in case of contamination.

For the two M6 demos the general conclusion is that the LinkSmart middleware developed in the
Hydra project provided adequate support for application developers, exploiting two LinkSmart
components: a Network Manager and an Event Manager.

Various advantages and disadvantages of building on the LinkSmart middleware have been reported,
and for future work a rather generic and reusable approach will offer more flexibility.

Month 12 demos

For the M12 Automotive Manufacturing demo the initial architecture of the ebbits platform was
evaluated by asking several developers to work on a typical application; some developers were
asked to develop applications, others devices. The application monitors the physical state of a
transformer and the energy consumption of a welding process.

The M12 Food Traceability demo was developed to monitor the state of health of pigs in a farm,
such as their drinking and eating pattern and movement behaviour, simulating the feeding and
drinking station through an event generator.

The M12 Demo Prototypes are explained in detail in D5.4.1 Multi-sensory fusion and context
awareness prototype.

For the two M12 demos it was concluded that the event-driven approach used is easy to understand
and that the context-aware paradigm supports the developers in clustering sensor information based
on entities. However, application developers also mentioned that the number of events could grow
significantly in complex systems. Therefore, a complex event-processing engine should be integrated
into the ebbits platform. Various other problems and findings were reported, e.g. the unreliability of
the LinkSmart Event Manager for handling a burst of events.

Document version: 1.1 Page 5 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

2. Introduction

This deliverable reports outcomes of Task 72.3 Evolutionary requirements refinement and more
specifically the first results of Subtask 2.3.1 Lessons Learned collection and analysis.

2.1 Purpose, context and scope of this deliverable

This document contains a complete list of Lessons Learned during the first iteration cycle of the
ebbits project, organised per work package. These Lessons have been extracted from the joint
repository specifically established in the WP2 area of the Wiki part of GForge, the selected tracking
and management tool for the project.

The Lessons Learned have subsequently been analysed to elicit relevant improvement opportunities
for the specification of requirements for the next cycles of the iterative development process.

This analysis feeds into the closely related deliverable D2.8.1 Change request and re-engineering
report 1, as does the results of the usability evaluation reported in Section 5 .

Document version: 1.1 Page 6 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

3.

3.1

3.2

Research and Development Methodology

The ebbits project will develop architecture, technologies and processes, allowing businesses to
integrate the Internet of Things into mainstream enterprise systems and support interoperable real-
world, online end-to-end business applications. It will bridge backend enterprise applications,
people, services and the physical world, using information generated by tags, sensors, and other
devices and performing actions on the real world. The platform will be based on a Service-oriented
Architecture (SoA), transforming every device into a service.

The work in ebbits involves many complex issues, which will be tackled in twelve interrelated work
packages.

In the subsections below, a brief description is given of the software engineering process, the
iterative approach and the Lessons Learned methodology adopted for ebbits, outlining how these
techniques all work together to support the requirements re-engineering process.

Software engineering process

The requirement engineering process in ebbits follows the principles of ISO 9241-210%. This
standard provides guidance on human-centred design activities throughout the lifecycle of
computer-based interactive systems. The engineering process is enhanced by the expertise of the
multi-disciplinary team, which is essential for a human-centred design process. The solutions are
implemented in iterations, balancing technology and user functions. Users (who may be end users or
developer users) will be actively involved in the process.

Overview of the iterative approach

The starting point of the iterative design process in ebbits is a set of domain-specific Vision
Scenarios delivering end user visions of the future use of ebbits applications in two different
domains: Automotive Manufacturing and Food Traceability. Figure 1 presents an overview of the
iterative approach.

1 150 9241-210:2010-03 (E). Ergonomics of human-system interaction - Part 210: Human-centred design for
interactive systems

Document version: 1.1 Page 7 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

3.3

Figure 1 — Overview of the iterative process

These Vision Scenarios are used to derive technical and business oriented usage scenarios, providing
the foundation for an initial set of requirement specifications reported in deliverable D2.4 Initial
requirements report.

This initial set of requirements contributes to the definition of the first architectural specifications,
which drive the research and development work in application implementation and system
integration. Software prototypes will be demonstrated and validated in domain-specific settings,
aiming to demonstrate the outcome of each cycle to developer users, end users, project partners,
reviewers, etc.

The planned verification, validation and usability testing activities are described in deliverable D2.6
Valigation framework. All results from validation and experiences gathered in the process will lead to
refined technical and business-oriented scenarios, revised requirements specifications, updated
architecture and new prototype specifications.

Re-engineering of requirements

The ebbits project is planned to evolve in four iterative development cycles, each resulting in a
prototype application as follows:

e End of year 1: First prototype of the ebbits platform serving as proof-of-concept

e End of year 2: Prototype II based on the production optimisation scenario

e End of year 3: Prototype III incorporating the food traceability scenario and
additional elements from the production optimisation scenario

e End of year 4: Fully operational prototype, combining all elements from the two
domains into the final platform prototype and demonstrator

After the successful completion of a prototype cycle, each RTD work package will analyse and report
their development results, RTD experiences, Lessons Learned in the development and integration
work and other relevant knowledge gained during the development cycle. Moreover, knowledge
gained from formal testing and system integration will be collected together with the latest

Document version: 1.1 Page 8 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

developments in technology, regulatory affairs and markets, which influence the outcome and
exploitability of the project.

3.4 The ebbits approach to Lessons Learned

Lessons Learned are a principal component of a project culture committed to Knowledge
Management. Lessons Learned help to support project goals in the RTD work by:

e Promoting recurrence of successful outcomes
e Precluding the recurrence of unsuccessful outcomes.

As part of the continuous improvement programme adopted by the ebbits Project Board, a
systematic and continuous collection, indexing and dissemination of Lessons Learned will be
undertaken in WP2.

This section will establish criteria for the Lessons Learned process and discuss how to turn Lessons
Learned into Lessons Applied.

Lessons are learned during project RTD work, during testing and integration, as a part of the
validation of project prototypes and from watching developments in technology, market and
regulatory standards. Lessons can thus be learned throughout the project work. As such, Lessons
Learned constitute both individual and organisational knowledge and understanding gained by
experience, either negative (missed targets, solutions that do not work as expected, wrong choice of
technology) as well as positive (easier implementation than expected, faster response time, more
interoperable devices than expected).

In order to implement a workable Lessons Learned process, we need first to define what we
understand with the term “lesson”. We use the following characterisation for a lesson:

It must be significant in terms of the project progress and ability to meet its goal
It must be valid, i.e. the experience gained must be repeatable

It must be applicable to the ebbits project

It may contain or address pertinent info

It may provide information of interest

Not all experiences will qualify as being Lessons Learned and it is important that reported Lessons
Learned not merely restate existing information and existing experiences not related to ebbits work.

The ebbits Lesson Learned process has six steps:

Collection

Verification

Storage

Dissemination

Reuse

Identification of improvement opportunity

3.4.1 Collection

The collection process focuses on collecting Lessons Learned from many sources internal and
external to the project. The collection will be undertaken in practically all work packages.

In particular, the RTD work undertaken in the technical work packages will provide a large amount
of Lessons Learned, by virtue of the many researchers participating in this work and the many small
and large experiences gained individually and as teams. The challenge here is to identify and
properly describe the Lessons Learned and filter them according to significance, validity, and
applicability to the ebbits project.

Testing and validation of the prototypes will also provide a range of experiences that can be
classified as Lessons Learned. Finally, the supporting work undertaken in the form of

Document version: 1.1 Page 9 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1
demonstrations, training and dissemination will, at least in principle, contribute Lessons Learned to
the project.

3.4.2 Verification
Verifying the collected lessons according to established standards is the second step in the process.
All Lessons Learned must be verified for correctness, significance, validity, and applicability. The
verification will be performed by the WP2 team together with the Technical Manager and relevant
WP leaders. The Technical Manager will decide to add and remove Lessons Learned as necessary.
Some of the criteria that may be used for verification are:

e Relationship with the project flow
e Relevance to the project outcome
e Significance in terms of quality parameters such as robustness, ease of use,
functionality
e Research aids used
e Systemic process issues
e Credibility or reputation of the originator
3.4.3 Storage

The Lessons Learned will be entered into a dedicated area of the ebbits Wiki. The area has been

created and is maintained by WP2. It contains a simple categorisation tagging for filtering purposes.
For the sake of simplicity, a very simple template will be provided with no special structure or format
needed. An example is shown in Figure 2.

The Lessons Learned repository will act as an organisational memory for experiences accumulated
during the course of the project.

WP8 Lessons Learned in the first development cycle

Cat. |Drg. | Experience and knowledge gained | Lesson learned
e Thi tormatic bui i
e It is hard to make automatic build of LinkSmartMiddleware? as the Think about the S build of codes in
o LU automatic build solutions are difficult with 0SGI advance and decide on a common toal
- ' « Watch development of vy, maven
NET |EIT Wireless communication is difficult in the scenarios. In famrs no = Wireless communication methods have to be
good coverege in manufacturing too big EM pollution investigated
Applications need to access different physicabworld parameters on | The PWAL of a PLC should support the
PRO |ISMB |PLCs with different periodicities, eventually changing dynamically configuration of dynamic poling policies of devices
over time. involved in a2 manufacturing plant
In many cases, applications need to be aware of some
PRO | 1SMB characteristics of the Physical World (e.q. the periodicity of The PWAL should support dynamic poling policies
detecting and exposing information data by a physical sensor, the |of devices involved in a manufacturing plant.
duration of 2 measurement).
In order to perform some energy-related measurement, it is often |- ’ T I T i
RTD |ISMB |needed to execute computations which highly depend on time ;é?ﬁr':tamﬁj'in%SE;%‘;E;SE ;I;r?;ns':gnurzizéses
precision (e.q. integrals of power over time). <. mig
Memory data blocks inside a PLC contain raw data representing
Physical World information. By using suitable symbals, the above The PWAL must provide suitable methods to give
SWD |ISMB |information can be clearly identified. Additional configuration is users the possibility to enrich PLC data with
then needed to enrich their description with process-related additional meta-data needed by ebbits.
meaning.

Figure 2 — Example of Lessons Learned posted in the Wiki repository

3.4.4 Dissemination

Obviously a very important part of the process is to inform other users in the feedback cycle. All
project workers are encouraged to continuously consult the Lessons Learned repository, not only
with the purpose of reporting, but also to continuously follow Lessons Learned by other project
partners.

Document version: 1.1

Page 10 of 28

Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

3.4.5

3.4.6

Once in every iteration cycle, the Lessons Learned will be documented as described in Section
Error! Reference source not found..

Reuse

Because Lessons Learned in one work package may affect other work packages, each ebbits partner
is encouraged to take advantage of all the Lessons posted under the individual work packages. The
WP leaders have a responsibility to consult the Lessons Learned repository regularly and at least
before any major decision affecting the scientific work and project outcome is to be made. The WP
leaders are obliged to take part of the engineering process of requirements, which is based on a
timely assessment of the reported Lessons Learned.

Identification of improvement opportunity

The last step in the process is the identification of incremental and innovative improvements and
additions to the initial set of requirement specifications for the project.

From the Lessons Learned, relevant new and/or updated requirements will be extracted. The
identification, formulation and validation of requirements will be performed by a WP2 team together
with the Technical Manager and relevant WP leaders. The team will update the GForge Issue
Tracker with the extracted requirements and report the change requests for the first cycle in the
deliverable D2.8.1 Change request and re-engineering report 1. See also Section Error! Reference
source not found..

Document version: 1.1 Page 11 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

4.1

4.1.1

4.2

Lessons Learned in the First Cycle

This Section contains all Lessons Learned in cycle 1 and the subsequent analysis. To facilitate
referring to individual Lessons Learned they have been named LL followed by the relevant work
package number and Lesson number (as they appear in the Wiki repository), e.g. LL WP3-1. Though
reported for one work package, Lessons Learned may very well affect other work packages, and
therefore it is important to keep track of all new entries the repository on a regular basis.

The outcome of this process is the identification of a series of improvement opportunities, some of
which may result in the need for new, changed and deleted requirements. The changes in
requirements are reported in the deliverable D2.8.1 Change request and reengineering report 1.

A total of 49 Lessons Learned has been reported in the first iteration cycle, resulting in the addition
of 45 new requirements and update of 4 requirements. No requirements have been deleted.

Lessons Learned in WP2

WP2 is responsible for Requirements engineering and validation. IN-JET is the WP leader and 1
Lessons Learned has been collected and validated from this WP.

Org. Experience and knowledge gained Lesson Learned
No.

IN-JET External experts typically have very full calendars It may be unrealistic to expect
and cannot be expected to attend Vision scenario external participation in Vision
LL WP2-1 workshops at short notice. This may conflict with the | scenario workshops with early due
time constraints imposed at the start-up phase of a dates for resulting deliverables
project

Analysis of Lessons Learned

LL WP2-1 is non-technical in nature. This Lesson is not directly applicable to the ebbits project,
because is involves the initial planning of the project work. But the result of the Lesson, nonetheless,
has been the decision to regard the User Partners as experts in their individual domains and rely on
their knowledge for eliciting requirements and defining Vision scenarios. Though generally it adds to
the visionary dimension to engage external experts, this approach was considered reasonable
because the proposed business applications of ebbits are sufficiently anchored in the present.

This Lesson has not resulted in changes to the initial set of requirements.
Lessons Learned in WP3

The work undertaken in WP3 involves Enterprise frameworks for lifecycle management. TUK is the
WP leader and 3 Lessons Learned have been collected and validated from this WP.

Org. Experience and knowledge gained Lesson Learned

No.

TUK In D3.1 Enterprise use cases description of general The indicators for measuring overall

LL WP3-1 use cases was "too general” and should be more efficiency of the ebbits application
consistent with the modelling guidelines should be defined (in discussion

with COMAU and TNM). Based on the
discussion results, relevant processes
and general use cases should be
modified/elaborated in more details

TUK Potential general optimisation methodologies and ebbits platform should be able to
LL WP3-2 methods have been identified, but their expose all the information needed to
implementation would require additional overhead support the adoption of commonly

used optimisation methods. On this

Document version: 1.1 Page 12 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

4.2.1

4.3

(including use of additional human resources) basis new/modified optimisation
methods can be proposed in the
future

ISMB In the manufacturing scenario, although expensive Having items manufactured in

LL WP3-3 manufactured items are provided with identifiers, batches can have an impact on
several items are manufactured in batches accounting energy-related operations
(e.g. we have a batch of 100
components which costs 1 KWh to be
manufactured: if only 20 of them are
used in a final product, it is necessary
to understand how to account the
consumption to the final product)

Analysis of Lessons Learned

WP3 is not technical in nature. Thus LLs in this WP have not resulted in changes to the user
requirements; rather they have impacted on some further project activities and deliverables (mostly
within WP3).

According to LL WP3-1 description of general use cases was too general, which means that
additional information is needed for more detailed description of these processes. This additional
information can be obtained from description of processes reported in D3.4 Business framework for
online OEEE applications for production and energy optimisation and in D3.5 Business framework for
online food traceability in lifecycle perspective. Based on this, more detailed general use cases can
be created.

LL WP3-2 implies that additional information is needed to decide on the optimisation method to be
used in the manufacturing domain. This information is expected from the description of use cases in
the above mentioned deliverable D3.4. Current analysis indicates that modification/combination of
the existing metrics (as a basis for optimisation) will be used, rather than new metrics.

LL WP3-3 reports that some goods are manufactured in batches. In such cases, calculation of
energy needed for manufacturing of these goods will be based on estimations (e.g. energy
consumption for production of the whole batch divided by the number of units in the batch).

Lessons Learned in WP4

The work undertaken in WP4 relates to Semantic knowledge infrastructure. SAP is the WP leader
and five Lessons Learned have been collected and validated from this WP.

Org. Experience and knowledge | Lesson Learned

No. gained

SAP Appropriate knowledge The knowledge representation formalisms must be as
representation formalism is small and easy as possible, but as expressive as

LL WP4-1 needed to avoid the high necessary for our scenarios. The dialects of OWL-Lite
complexity in the knowledge came out as the best candidates
manipulation process

SAP Common ontology namespace is In order to be able to connect the several ontology
important modules defining the overall ebbits ontology and possibly

LL WP4-2 also the external ontologies, an ontology identifier has to

be specified. Ebbits ontologies will share

namespace http://www.ebbits-project.eu/ontologies. In
future, this identifier may enable inclusion of the ebbits
knowledge bases into the external ontologies

Document version: 1.1 Page 13 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

TUK The strategy of ontology reflection | The Hydra semantic discovery strategy and the
of the physical devices used in representation of the physical devices in the ontology
LL WP4-3 HYDRA would probably lead to the | must be adapted for ebbits purposes. The solution must
information redundancy for the be able to create unique mapping between physical
ebbits use cases devices and their semantic reflections. As large numbers
of devices are expected in the ebbits use cases, the
solution must be able to preclude redundant information
TUK The ebbits ontology manager The use cases implemented in the M12 Automotive
should provide dedicated Manufacturing demo showed that the application
LL WP4-4 services for accessing specific developers must be able to access specific knowledge in
knowledge a specific way. As presently knowledge is accessed using
SPARQL queries, dedicated services would mean not
having to learn new query languages and hence using
the ontologies in a more suitable way
TUK The development of the semantic | The design of the semantic models based on the
models must be driven by the real | theoretical assumptions of the potential usage may lead
LL WP4-5 use cases instead of the to the complex models, which are never used in the
theoretical assumptions to avoid practice. The development of the ontologies must be
the unnecessary complexity in the | driven only by the real use cases with respect to the
knowledge future usage. The semantic models should not contain
the information, which is not used in the practice. This
approach enables to hold the ontologies simple, easy to
understand, easy to maintain and, of course, the
computation complexity and the query answering
response much faster

4.3.1 Analysis of Lessons Learned

The analysis of the five Lessons Learned has resulted in the definition of 5 new requirement; no
requirements were modified or deleted.

LL WP4-1 reports the need for appropriate knowledge representation formalism. The search for
suitable candidate led to the new requirement /ebbits-464] OWL-lite will be used to model

ontologies.

LL WP4-2 concerns the importance of a common ontology namespace and led to the new

requirement [ebbits-465] Ontology namespace.

LL WP4-3 reports the need for unique mapping between physical devices and their semantic
reflections, which led to the new requirement /ebbits-383] Devices should be annotated with id,

type, name, location and current/historical data.

LL WP4-4 requires of the ontology manager to provide dedicated services for accessing specific
knowledge, resulting in the new requirement /ebbits-466] Query the ontologies conveniently.

LL WP4-5 reports that development of the semantic models must be driven by the real use cases
instead of theoretical assumptions, leading to the new requirement /ebbits-467] Only relevant parts
in the ebbits ontologies.

4.4

Lessons Learned in WP5

The work in WP5 involves Centralised and distributed intelligence. FIT is the WP leader and 11
Lessons Learned have been collected and validated from this WP.

Org. Experience and knowledge gained Lesson Learned

No.

FIT Sensor fusion algorithms vary greatly and cannot be | We need a plug-in system that allows

LL WP5-1 generalised in a single module new algorithms (e.g. mathematical
calculations) to be added dynamically

Document version: 1.1

Page 14 of 28

Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

at runtime
FIT Sensor fusion calculation module is needed by Sensor fusion calculation module
LL WP5-2 different components e.g. proxy devices and context | should be decoupled from the context
manager manager
FIT Due to deviations of the data sent by different Soft-logic algorithms are needed to
LL WP5-3 sensors inferring context needs to take uncertainties | calculate the certainty of a context
of data into account
FIT Application development can benefit from a central Context manager needs to be
LL WP5-4 interface that could deliver the real time context implemented which should monitor
information of the devices context changes of devices and
processes
FIT Rules are needed to describe relationships among A rule engine is needed for the sensor
LL WP5-5 sensor data and to infer context fusion and the context manager
FIT Dynamically loaded libraries (e.g. DLL, JAR, OSGI Dynamically loaded libraries must
LL WP5-6 bundle) could contain malicious code contain a valid signature in order to
prevent security breaches in the
system
FIT Libraries could contain functionality that should not The dynamic loading of libraries must
LL WP5-7 be available to all kinds of applications (e.g. be restricted through policies
calculation of quality rating of meat should only be
allowed for slaughterhouse application but not for
consumer application)
FIT Sensor fusion modules need to access historical data | Event manager will need to store all
LL WP5-8 events and provide a query interface
to retrieve historical data
FIT Business rules are triggered by business events to Context manager should monitor and
LL WP5-9 perform actions e.g.: to notify enterprise analyze sensor events and as a result
applications when the process starts and finishes or | generate business events
how many resources have been consumed for the
process
FIT Performance of the context manager could be Strategy to support scalability needs
LL WP5-10 | affected by too large number of sensor events to be developed
FIT In a dynamic environment entities (like mobile The context model needs to be
LL WP5-11 | devices or sensors) constantly enter and leave the extensible during runtime
context boundary of an application

4.4.1 Analysis of Lessons Learned

The analysis of the 11 Lessons Learned has resulted in the definition of 14 new requirements and
the modification of one requirement; no requirements were deleted.

LL WP5-1 describes the need for a plug-in based approach that allows loading sensor fusion
algorithms at runtime. This analysis results in the definition of one new requirement [ebbits-451].

In LL WP5-2 we agreed that the sensor fusion calculation module must be decoupled from the
context manager. This also results in the definition of a new requirement [ebbits-452].

LL WP5-3 states that soft-logic algorithms are required to calculate the certainty of a given context.
For instance, due to deviations in collected sensor data the context manager needs to take into
account uncertainties in this collected data. For this purpose two new requirements [ebbits-131] and
[ebbits-450] have been created.

LL WP5-4 reflects the implementation of the context manager while considering monitoring
contextual changes of both devices and processes. This has resulted in two new requirements
[ebbits-140] and [ebbits-154] being created. Subsequently the status of requirement [ebbits-154]
has been set to duplicated, as [ebbits-43] already covers it.

In LL WP5-5 we experienced that the sensor fusion and context manager needs a reusable rule
engine. This meant the addition of a new requirement [ebbits-453].

Document version: 1.1

Page 15 of 28

Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

4.5

4.5.1

4.6

LL WP5-6 states that libraries that are loaded dynamically must contain a valid digital signature in
order prevent security breaches in a system; the integrity of the sensor fusion and context manager
depends also on the integrity of their dynamically loaded libraries. Hence, a new requirement
[ebbits-135] has been created.

LL WP5-7 explains that the dynamic loading of libraries needs to be restricted by policies. For this
purpose one new requirement [ebbits-458] has been defined.

LL WP5-8 points out that the Event Manager needs to store all sort of events and provide a query
interface to retrieve historical data, as for instance the sensor fusion module requires to access such
historical data. Therefore, requirement [ebbits-64] has been updated. This Lesson influences the
work to be done in WP7 Event management and service orchestration.

LL WP5-9 outlines that the context manager needs to monitor and analyse sensor events and as a
result trigger business events. This analysis results in the definition of two new requirements
[ebbits-454] and [ebbits-455].

In LL WP5-10 it is reported that a strategy has to be developed that supports scalability. For
instance, the performance of the context manager could be affected by an excessive number of
sensor events. For this purpose, a new requirement has been defined [ebbits-456].

LL WP5-11 mainly reflects that the context model must be designed to be extensible at runtime. This
analysis results in the creation of two new requirements [ebbits-134] and [ebbits-139]. Note:
[ebbits-139] is dependent on [ebbits-134].

Lessons Learned in WP6

The work in WP6 revolves around Mainstream business systems. SAP is the WP leader and two
Lessons Learned have been collected and validated from this WP.

Org. Experience and knowledge gained Lesson Learned
No.

SAP A potential user of the ebbits platform in the A mobile access (at least a read
LL WP6-1 traceability scenario, e.g. the farmer, will not access) to the data in the ERP
only be working at his desk system would be desirable

SAP There are a lot of different mobile devices with | In order to support different
various platforms available on the market right | mobile platforms, it could be

LL WP6-2 h .

now convenient to access the required

information by using web

browsers

Analysis of Lessons Learned

The analysis of the two Lessons Learned has resulted in the modification of one requirement; no
requirements were added or deleted.

LL WP6-1 specifies the need for mobile access, which should be at least read access, to the high-
level data in the ERP system. This analysis resulted in a modification of [ebbits-99].

LL WP6-2 is related to LL WP6-1, stating that in order to be able to use a variety of mobile platforms
the mobile access should be browser-based if possible. This also involved the modification of [ebbits-
99].

Lessons Learned in WP7

The work undertaken in WP7 deals with Event management and service orchestration. CNET is the
WP leader and seven Lessons Learned have been collected and validated from this WP.

Org. Experience and knowledge gained Lesson Learned

Document version: 1.1 Page 16 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

No.
ISMB An action executed by the system may be The proposed architecture needs to
LL WP7-1 dependent on more than one event, and some of support a persistent events storage
them could have occurred in the past. It would be on some of the more event-
useful to maintain an event history onboard ebbits consuming nodes
nodes
CNET The platform must be able to handle a large Need lower layer filtering and fusion
number/high frequency of parallel event streams. (WP5), as well as higher level (WP7)
LL WP7-2 Large=? High =? aggregation and semantic enrichment
of events
CNET Depending on the network reliability, events may be | The platform must guarantee reliable
delivered out of order and in parallel streams, and delivery of events. A proper ordering
LL WP7-3 may potentially be lost due to failures of events must be provided. It should
be possible for applications and event
processing components to query the
properties of a specific network
installation, so as to determine a level
of reliability
CNET The initial tests indicates that the current design The current event system based on
does not scale properly the publish/subscribe principle has
LL WP7-4 limitations in terms of scalability.
Alternatives should be considered
CNET It must be possible to interpret events in the context | The event core ontology (or
of the different layers in the architecture (from simplified/compiled subsets thereof)
LL WP7-5 PWAL to BRAL =Business Rules Adaptation Layer) should be accessible by all event
processing components
CNET The "data management" parts of ebbits are to be Need for coordination of issues
further analysed specifically with respect to eventing | related to vocabularies, ontologies,
LL WP7-7 knowledge representation and
data/events persistency (WP3,4,7)
T e S o ne, | A ortof tne cesign o
LL WP7-7 "lessons learned" co'mpilations the process does not implementation work, the project
fully capture and generalize th:e experience gained s_hould complle_ a set of design guide-
into reusable knowledge lines and principles for event-based
and service-oriented architectures. It
should have a strong IoT focus

4.6.1 Analysis of Lessons Learned

The analysis of the seven Lessons Learned has resulted in the definition of six new requirements; no
requirements were modified or deleted.

LL WP7-1 states that actions may depend on multiple possibly historic events. This introduces two
new requirements /ebbits-461] Dependencies on past events possible and [ebbits-218] An event
history should be maintained.

LL WP7-2 and WP7-4 address scalability and propose multi-layer filtering and aggregation. Two new
requirements [ebbits-462] Scalable event processing and [ebbits-463] Semantic event processing
have been added. LL WP7-4 is linked to LL WP8-9, see below.

LL WP7-3 addresses reliable delivery of events. This is supported by the new requirement /ebbits-
217] Events must be possible to order in the actual event sequence.

LL WP7-5 states the need to interpret events on several layers in the platform architecture. This is
addressed by the new requirement [ebbits-463] Semantic event processing.

LL WP7-6. Event management should be based on well-defined semantics, i.e. a vocabulary encoded
in a rich semantic model, such as an ontology. The ebbits platform also deals with “data”
management, in terms of modelling, storage and exchange of information. This LL states the need

Document version: 1.1

Page 17 of 28

Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

to coordinate the selection and design of vocabularies and models across the work packages dealing
with event and data management. It is the basis for the new requirements /ebbits-463] Semantic
event processing and [ebbits-220] Event model based on common vocabulary, which more explicitly
express the need for an event ontology to be based on a vocabulary related to the overall ebbits
data and process models. This particularly involves WP3, WP4, WP6 and WP7.

LL WP7-7 is a remark on the need for improved coordination and collaboration in the design process
in order to maximise knowledge development and sharing. It does not imply any new requirements

at this stage.

4.7

Lessons Learned in WP8

The work in WP8 takes care of Physical world sensors and networks. ISMB is the WP leader and 17

Lessons Learned have been collected and validated from this WP.

Org. Experience and knowledge gained Lesson Learned
No.
FIT It is hard to make automatic builds of LinkSmart Think about the automatic build of
LL WP8-1 Middleware as the automatic build solutions are codes in advance and decide on a
difficult with OSGI common tool.
Watch development of ivy, maven.
This is also relevant for WP9
FIT Wireless communication is difficult in the scenarios Wireless communication technologies
LL WP8-2 considered in the project. For instance, in farms, have to be analysed with respect to
there could be poor radio coverage, while in the considered scenario
manufacturing EM pollution could be present
ISMB Applications need to access different physical-world | The PWAL of a PLC should support
LL WP8-3 parameters on PLCs with different periodicities, the configuration of dynamic polling
eventually changing dynamically over time policies of devices involved in a
manufacturing plant
ISMB In many cases, applications need to be aware of The PWAL should support dynamic
LL WP8-4 some characteristics of the Physical World (e.g. the polling policies of devices involved in
periodicity of detecting and exposing information a manufacturing plant
data by a physical sensor, the duration of a
measurement)
ISMB In order to perform some energy-related Time-stamping at low level, with
LL WP8-5 measurement, it is often needed to execute significant accuracy, might be needed
computations which highly depend on time precision | in some use-cases
(e.g. integrals of power over time)
ISMB Memory data blocks inside a PLC contain raw data The PWAL must provide suitable
LL WPS8-6 representing Physical World information. By using methods to give users the possibility
suitable symbols, the above information can be to enrich PLC data with additional
clearly identified. Additional configuration is then meta-data needed by ebbits
needed to enrich their description with process- framework
related meaning
ISMB The name of the PLC symbols is usually decided by The PWAL should include mechanisms
LL WP8-7 PLC developers using a custom approach to associate custom symbols to
ontologies selected within the ebbits
environment
ISMB Memory writing processes in PLCs could trigger The PWAL should be aware of writing
LL WP8-8 sharp program interruption if the data inserted is not | on the PLC memory appropriate data
correct or adequate types and value ranges regarding the

Document version: 1.1

Page 18 of 28

Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

different variables
ISMB In some use case, multiple (e.g. 10, 20, or even 50) | It is needed to explore methods
LL WP8-9 parameters change at the same time onboard the allowing aggregation/disaggregation
PLC (e.g. due to some synchronous polling of wired | of events to enhance scalability,
sensors). This causes the generation of a large without compromising the current
number of events at the same time, which, on very mode of operations
large-scale deployments, can originate scalability
problems
ISMB When the PWAL tries to read or write some critical A semaphore-based policy must be
LL WP8-10 | variable onboard PLCs via OPC, sometimes weird agreed with PLC developers, to
values are returned due to the PLC program using ensure that all variables exposed to
those variables when OPC server accesses them ebbits are safe
ISMB When the remote LinkSmart environment is Similar events should automatically
LL WP8-11 | restarted while developing, many variables in the generate some explicit exception in
local environment (e.g. the link to the Event order to enhance code safety
Manager) stop properly working
ISMB Devices accessing the ebbits network could use Devices accessing ebbits by using
LL WP8-12 | different network managers depending on the non-corporate or external networks
available network interface (3GPP) should be able to detect
which border network manager they
must connect to
ISMB Data storage needs within multi-radio could Some mechanism should be designed
LL WP8-13 | suddenly and quickly grow in case network coverage | and developed in order to maintain
is not good and large amounts of data need to be the data storage as low as possible
transferred e.g., by implementing application
specific policies
ISMB In multi-radio devices, the network selection should | The Multi-radio Manager should
LL WP8-14 | be based not only on the availability and the current | provide the mechanisms capable of
status of the network resources but also on acquiring the necessary information
application requirements and using it for selecting the most
proper network interface
ISMB The presence of interference in a specific Frequency agility features should be
LL WP8-15 | environment might significantly degrade the included in 6LOWPAN networks being
performance of a 6LoWPAN integrated into ebbits platform. This
would improve overall system
reliability
ISMB Multi-radio could need additional features, besides The use of data storage and delay
LL WP8-16 | network selection, in order to provide network tolerance networking capabilities
reliability and efficiency to the ebbits framework combined with multi-radio could be
beneficial for getting more reliable
data transmission
ISMB A multi-radio device, while representing the same Mechanisms (e.g. cryptographic
LL WP8-17 | physical device, could have different low level tickets) could be implemented in
addresses (e.g. IP address) according to the order to avoid the re-generation of
selected network interface new HIDs in multi-radio devices when
connecting to new network managers

4.7.1 Analysis of Lessons Learned

The analysis of the 17 lessons learnt has led to the definition of 20 new requirements and the
modification of 2 existing requirements. No requirements have been deleted.

LL WP8-1 and LL WP8-11 describe some LinkSmart specific issues, like the lack of automatic builds
due to some technical limitations of OSGI or proper handling of restarting remote environments by
local instances. These issues define two new requirements, /ebbits-468] LinkSmart should support
automatic builds and [ebbits-469] Local LinkSmart instances should properly handle local variables
when remote environments are restarted. LL WP8-1 is also relevant for WP9.

Document version: 1.1

Page 19 of 28

Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

LL WP8-2 exposes the risks of using wireless communications in both scenarios, which should be
taken into account when choosing the wireless technologies and designing deployment architecture.

LL WP8-3 and LL WP8-4 address the issue of different polling policies that should be supported by
the PWAL, leading to the definition of a new requirement [ebbits-470] PWAL should support
reconfigurable dynamic polling policies.

LL WP8-5 highlights the necessity of accurate time-stamping at data acquisition level for different
applications; therefore four new requirements have been defined: [ebbits-155] Synchronization of
acquired data Is necessary, [ebbits-219] Event history size andyor time span should be configurable,
[ebbits-471] ebbits should implement a distributed time-dissemination and synchronization service
and [ebbits-472] PWAL should support accurate time-stamping of data acquainted.

LL WP8-6 and LL WP8-7 discuss some issues faced in the identification and enrichment of raw data
from the physical world (in particular a PLC) through the PWAL, thus resulting in the following new
requirements: /ebbits-473] PWAL should expose suitable methods in order to enrich raw data and
[ebbits-474] PWAL should be able to match PLC symbols with ebbits ontologies.

Moreover, the existing requirement /ebbits-383] Devices should be annotated with id, type, name,
location and current/historical data (status, work in progress, consumables levels, quality record,
energy consumption, energy profile, planned/unplanned intervention/maintenance, fault info, etc.)
has to be modified.

LL WP8-8 and LL WP8-10 present some potential errors in the writing process on the PLC, thus
necessitating two new scheduling and error control requirements: [ebbits-475] PWAL should adopt a
lock and semaphore-based and policy to the access of PLC memory and [ebbits-476] PWAL should
implement an error control strategy to assert correct data type and values written to the PLC.

LL WP8-9 points out scalability issues in events generated from the PWAL, coped with by two new
requirements: /ebbits-477] PWAL should implement a heterogeneous multi-data aggregation in
single events and [ebbits-478] PWAL should expose basic feature extraction and sensor fusion
functionalities (e.g., moving average, decimation, filtering, etc) in order to minimize scalability
/ssues. This Lesson is linked to LL WP7-4 above.

LL WP8-12 and LL WP8-17 outline some potential LinkSmart Network Manager association problems
when using multi-radio. Such issues will be tracked with the following new requirements: /ebbits-
479] Multi-radio devices should be able to detect which LinkSmart Network Manager to
connect/migrate to, according to the current network interface active and [ebbits-480] Multi-radio
devices should avoid re-generation of HIDs when migrating to a different LinkSmart Network
Manager.

In addition, two existing requirements were identified for extensions in their definitions: /ebbits-51]
The network infrastructure needs to have self-configuration capabilities and [ebbits-53] New
products should be networked with mainstream enterprise systems easily and cost-efficiently.

LL WP8-13 and LL WP8-16 report some network reliability features that should be supported by
multi-radio devices, features covered with two new requirements: /ebbits-481] Multi-radio devices
should be use local data caching and delay tolerance networking and [ebbits-482] Multi-radio
devices with local data caching should implement suitable application specific data-expiration policies
in order to prevent cache overflows.

LL WP8-14 details some policies for the multi-radio network selection strategy, summarised in two
new requirements: [ebbits-483] Multi-radio devices should be able to gather information about their
network interfaces needed for the selection policies and [ebbits-484] Multi-radio devices should
select the most proper network interface according to the application requirements.

LL WP8-15 explains the benefits of frequency agility in 6LOWPAN networks, which could be
introduced as a new requirement: /ebbits-485] 6LoWPAN networks should include frequency agility
features in order to enhance the overall system reliability.

Document version: 1.1 Page 20 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

4.8

Lessons Learned in WP9

The work in WP9 takes care of Platform integration, test and deployment. CNET is the WP leader
and the following Lessons Learned have been collected and validated at the end of the first iteration
from this WP.

Org. Experience and knowledge gained Lesson Learned
No.
CNET Too little/to late integration work, has a Every major platform
negative impact on the work process and the release/milestone, should be
LL WP9-1 -
results foregone by minimum two IRL
integration workshops
CNET LinkSmart OSGi development environment is Convince LinkSmart to set up
error prone with regards to the configuration configurations in a text based file
LL WP9-2 . .))
parameters. For instance it is possible to lose instead

all security, Network Manager and Event
manager settings when rebuilding the system

CNET Integration work hampered by that all partners | All partners with code to integrate
involved in the integration did not turn up to should be attending the

LL WP9-3 . : . ; X .
the integration meetings. integration meetings.

4.8.1 Analysis of Lessons Learned

4.9

The analysis has not led to any new or modified requirements for the platform or its architecture per
se. However, it is recommended that these LLs result in updates to the procedures in the Test and
Integration Plan (D9.1), with respect to integration procedures.

LL WP9-1 and LL WP9-3 imply that the practical systems integration work has to be more carefully
planned, executed and adhered to. LL WP9-2 requires LinkSmart providers to take the necessary
technical measures.

Other work packages

In the first iteration cycle no Lessons Learned were reported from WP1, WP10, WP11 and WP12,
mainly due to their nature or the timing of the work to be done.

Document version: 1.1 Page 21 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1
5. Results of Usability Evaluation
This Section outlines usability results of the prototypes that were demonstrated at the Review
meetings in month six (M6) and month twelve (M12) of the ebbits project. At this early stage only
usability of developer tools has been evaluated, as experienced from an application developer
perspective.
5.1 M6 Demo Prototypes
The M6 prototypes were additional to the prototypes prescribed at the end of each annual cycle in
the Description of Work.
The goals of these M6 demo were:
e To provide an overview of ebbits and test-bed environment to be evolved further during the
project
e To get the technical team to work together
e To involve users at an early stage
Both the Automotive Manufacturing and the Food Traceability M6 prototypes were built on top of
LinkSmart middleware, developed in the Hydra? project.
5.1.1 Automotive Manufacturing M6 Demo Prototype

The first Automotive Manufacturing demo was driven by a common industrial task of spot welding
through automatic robots in automated manufacturing plants. Spot welding requires a large amount
of power and water in order to cool the tips, transformer and triacs. Monitoring power and water
consumption is a first step for enabling process optimisation, accounting and analysis of key
performance indexes (e.g. OEEE). The vision of ebbits is to interconnect robots in the plant to
spatially differently located manufacturing execution systems (MES). An MES is fed with sensor data
in the plant, enabling it to actuate the robots as required. For the sake of simplicity, the welding
robot is emulated by a simple water loop system controlled by a commercial off-the-shelf (COTS)
water pump installed at the premises of ISMB (Torino, Italy). The consumption is monitored through
a COTS water meter and a COTS electricity meter (Smart Plug) that is also used to emulate a simple
switch On/Off control. The user can interact with the devices located in Torino through a GUI in
Birlinghoven, Germany.

2 Hydra EU Project, http://www.hydramiddleware.eu/

Document version: 1.1 Page 22 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1
[Birlinghoven, Germany] : [Turin, Italy

I
|

ebbits Platform :

Demo Server _L Power Meter
On/Off
witch Event| _l_ Control
Database Publisher Subscriber
Network wF @
Manager o Tighet
I
| 5
I
: Water pump
Figure 3 — Automotive Manufacturing M6 Prototypical Demo
In the manufacturing scenario two kinds of events exist:
e Energy event, i.e. regular measurement of the instant and total consumption (of the water
and electricity).
e A switch event, i.e. either the pump is switched ‘On’ or ‘Off".
5.1.2 Food Traceability M6 Demo Prototype

The first Food Traceability demo seeks to enhance the communication workflow of medical data
between veterinarians and farmers. The argument is that in order to meet a growing demand for
food safety, an acceptable level of transparency must be provided over the entire lifecycle of a
product. For the demo, the focus has been on tracing the medication of pigs to prevent medicated
animals from being sent to slaughter by mistake and ensuring that it can be traced back in case of
contamination. The developed system comprises a medical application deployed on a personal digital
assistant (PDA) that feeds data through the LinkSmart middleware into an enterprise resource
system (ERP), thus enabling farmers to monitor the state of health of their pigs via a web interface.
In practice, it means that a vet examines a sick pig, identified by an RFID tag. After medicating the
pig, the vet documents the treatment using a PDA. Finally, the data is synchronised with the farm
ERP system by means of LinkSmart middleware. The farmer can then monitor the state of health by
using a dedicated web application.

Document version: 1.1 Page 23 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

|
} Web GUI
|

Publish event } Notify about event Push medicaton data ‘
|

\ | HTTP
|
‘ |
|
| .
LinkSmart
YN L | . .
PDA SOAP | Event Manager SOAP Dispatcher HTTP— REST server
\
|
|
\
] -
| [
} | ERP System
\
| Farmer’s location
Figure 4 - Food Traceability M6 Prototypical Demo
5.1.3 Conclusion

In general, the LinkSmart middleware provided adequate support for application developers while
implementing the two prototypes. Essentially, two LinkSmart components have been exploited: a
Network Manager and an Event Manager. In the following we summarise pros and cons experienced
when leveraging LinkSmart.

The ebbits project strives to enable Internet of Things (IoT) for business-enabled services. In order
to approach this vision a sophisticated network routing component is required. To accomplish this,
the Network Manager resides at the bottom of the LinkSmart middleware architecture, providing
Web Service based device access independently of the underlying communication technology
(ZigBee, Bluetooth etc.). Further, the LinkSmart Network Manager facilitates the detection of
services in an overlay P2P network based on queries that expect persistent identifiers as an input.
With regard to the manufacturing prototype demo, this was important because the Event Manager
Service was deployed at the premises of ISMB in Torino, Italy and the manufacturing GUI deployed
at the premises of Fraunhofer FIT in Birlinghoven, Germany (see Figure 3). As the Network Manager
implements P2P communication through SOAP Tunnelling to allow communication beyond firewalls
or NATs (Milagro et al 2008), we discovered a slight, but acceptable delay. More importantly, we had
to disable security, as otherwise we randomly faced an unhandled exception and delay of approx. 40
seconds when executing a LinkSmart Web Service call.

The LinkSmart Event Manager deals with the complexity of publishing and subscribing to events. In
general, with respect to software maintenance there is a great benefit from the loose coupling
between data source and destination(s) provided by the LinkSmart Event Manager. For example,
because the starting and stopping of the pump was realised through publishing of events, using
another COTS pump would require minimal changes, as it would only be necessary to adapt the
device specific SDK code. However, for future work in all likelihood more complex business events
are subject to be handled. For this purpose, the LinkSmart Event Manager has to be extended for
semantics, besides encapsulating simple key-value pairs in a topic.

In both prototypical demonstrations a Web GUI based on AdobeFlex® was provided. The data being
visualised was kept in a database that is accessible via a REST* interface. Both application domain
prototypes required pushing values to the REST-based database server being exposed through the
GUI. For this purpose a generic OSGi utility bundle has emerged, which was used for both demos.
However, the manufacturing demo also required the opposite direction of communication, i.e. to

3 Adobe Flex, http://www.adobe.com/products/flex/
4 Representational State Transfer

Document version: 1.1 Page 24 of 28 Submission date: 3 October 2011

ebbits

D2.7.1 Lessons Learned and results of usability evaluation 1

5.2

5.2.1

invoke the Event Manager Service to publish events in order to start the water pump. In order to
fulfil this feature, a dedicated application specific LinkSmart OSGi bundle has been developed that
runs on the same device as the manufacturing GUI. This bundle listens to REST calls and maps this
into a LinkSmart event publish call that is routed to the Event Manager being deployed at another
device. For future work, a rather generic and reusable approach will offer more flexibility. Of course,
the application logic of the GUI could have invoked the Event Manager Service running on a different
device also through a SOAP Web Service call applying SOAP Tunnelling, but at this stage the
developer of the GUI had no knowledge of consuming LinkSmart enabled SOAP Web Services.

M12 Demo Prototypes

The M12 Demo Prototypes are explained in detail in D5.4.1 Multi-sensory fusion and context
awareness prototype.

Automotive Manufacturing M12 Demo Prototype

To summarise, we evaluated the initial architecture of the ebbits platform by asking several
developers to develop a typical application in the Automotive Manufacturing domain. They were
given a task to develop an application that monitors the physical state of a transformer (Trafo) and
the energy consumption of a welding process. The group of developers was divided into application
developers and device developers. The device developers were asked to integrate a PLC and a few
sensors by creating device proxies. The monitoring sensors consisted of three thermometer sensors.
The first sensor measured the water temperature at the beginning of the cooling circuit (Tin), the
second sensor measured the water temperature near the transformer (Tmid) and the third sensor
measured the water temperature (Tout) at the end of the circuit. Moreover, two energy sensors
measuring voltage (V) and current (I) and a water meter (W) were installed.

The sensors were connected to a Siemens S7-400 series PLC which in turn was connected to an
Ethernet network. Additionally, there was an OPC server communicating with the PLC. The device
proxy used an OPC client library to communicate with the OPC server that accessed the PLCs with
Siemens native protocol. The PLC contains a program written using ladder logic and assembler that
pulled the data from the physical sensors and wrote the values into memory. The OPC server
provided an interface for reading this memory from an OPC client.

Following an event-driven approach (Mani Chandy 2006), the device proxy pulled the sensor values
(Tin, Tout, V, I, and ProcessStatus) from the OPC server every 500ms and published the results to
the event manager whenever the value had changed relative to predefined thresholds.

The device and application developers then together implemented the context module. The context
model was designed and stored in a semantic store. Furthermore, several rules to reason high-level
context for instance were defined. To calculate the amount of energy used to produce a body part,
the context manager starts summing up the electricity in watts (current times volt) and the amount
of water when it receives a “processStart” event and stops if it receives a “processStop” event. The
ProcessStatus event is set in the PLC if the RFID tag of an item is read on the conveyor.

Ontology Context Dufu S s
== Fusion Rule —~ ws +— GUI
Manager Manager

interface

Manager Engine =

NIz ¢

Event
v Events Storage

PLC Device Proxy M
T Manager
PWAL
i Manufacturing Scenario Simulator
PLC {5 PWAL
f . Simulated Simulated

Proximity Sensors | Production Data
Sensor

Figure 5 Architecture of M12 Manufacturing Demo

Document version: 1.1 Page 25 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

5.2.2 Food Traceability M12 Demo Prototype

The traceability scenario was developed to monitor the state of health of pigs in a farm, such as
their drinking and eating pattern and movement behaviour. For the traceability scenario we
simulated the feeding and drinking station through an event generator. The device developers
however must still develop device proxies to communicate with the event generator. Also, a context
model is developed that is stored in the ontology manager. The data fusion manager aggregates the
events from feeding and drinking station as well as pigs’ movement per day. The context manager
to infer the health of the pigs uses this information. The health context is calculated by the end of
the day, and an event containing this information is raised. The relationship between events coming
from the device proxies is modelled in ontology and stored in the ontology manager. The business
rule engine captures the ‘state of health’ event and according to the rule defined, it forwards the
information to the corresponding business application, in this case it was a dedicated GUI for
farmers.

Data Business
Ontology | __ | Context Restl

i — ws —
Manager Manager Fusion Rule GUI

Manager Engine icrac

N7

Event
Manager *<.| Events Storage

ﬂ Manager

Traceability Event Simulator

Figure 6 Architecture of the M12 Traceability Demo

The context manager also propagates the context of the pigs to the pens. For instance, if sick pigs
are in a pen, the “problem” context of the pen changes to the number of sick pigs. Moreover the
context manager keeps track of the location of each pig, and based on this it determines the number
of pigs in each pen.

5.2.3 Conclusion

The feedback we obtained from developers reflects that the event-driven approach we used is easy
to understand and that the context-aware paradigm supports them in clustering sensor information
based on entities. However, application developers also mentioned that the number of events could
grow significantly in complex systems. Therefore, a complex event-processing engine should be
integrated into the ebbits platform. Based on this, events can be filtered and aggregated. Secondly,
developers had problems estimating the relations between context and entities as events are raised
for each context change. They would prefer to be able to subscribe to a collection of events
belonging to one entity. They also had problem with the arrival time, since time synchronisation has
not been implemented yet. Further, developers seem to not entirely understand how and when to
query any information from the ontology, because they are not familiar with SPARQL®> query
language. Furthermore, they also would like to have a fully functional rule engine integrated in the
middleware.

Another problem that they faced was the reliability of the event manager of the LinkSmart
middleware; the handling of a burst of events is not good enough. Some events were dropped, and

> SPARQL Query Language for RDF, http://www.w3.0rg/TR/rdf-spargl-query/

Document version: 1.1 Page 26 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

this caused unexpected behaviour if the event is quite important. Hence, for future work this issue
must be tackled, as both application domains ask for high demands and strict constraints.

Document version: 1.1 Page 27 of 28 Submission date: 3 October 2011

ebbits D2.7.1 Lessons Learned and results of usability evaluation 1

6. References

(Mani Chandy 2006) K. Mani Chandy Event-Driven Applications: Costs, Benefits and Design
Approaches, California Institute of Technology, 2006.

(Milagro et al 2008) Milagro, F., Antolin, P., Kool, P., Rosengren, P., Ahlsén M. (2008). SOAP
tunnel through a P2P network of physical devices, Internet of Things
Workshop, Sophia Antopolis.

Document version: 1.1 Page 28 of 28 Submission date: 3 October 2011

