
Document version: 1.0 Submission date: 2012-02-29

Enabling the business-based

Internet of Things and Services

(FP7 257852)

D4.5 Analysis and design of semantic interoperability
mechanisms

Published by the ebbits Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 2 of 29 Submission date: 2012-02-29

Document control page

Document file:

 D4.5_Analysis_and_design_of_semantic_interoperability_mechanisms

_v1_0.doc

Document version: 1.0

Document owner: Yves Martin (SAP AG)

Work package: WP4 – Semantic Knowledge Infrastructure

Task: Task T4.3 – Mechanisms for semantic interoperability in

heterogeneous scenarios

Deliverable type: R

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Versio

n

Author(s) Date Summary of changes made

0.1 Yves Martin (SAP AG) 2012-01-01 Deliverable outline, ToC

0.4 Yves Martin (SAP AG) 2012-02-20 Chapters 1,2,3,4,5,6,9

0.5 Karol Furdik (InterSoft) 2012-02-20 Chapter 7

0.6 Peter Kostelnik (TUK) 2012-02-20 Chapter 8

0.7 Yves Martin (SAP AG) 2012-02-23 Version for internal review

0.8 Karol Furdik (InterSoft) 2012-02-28 Updated after internal reviews

0.9 Peter Kostelnik (TUK) 2012-02-28 Updated after internal reviews

1.0 Yves Martin (SAP AG) 2012-02-29 Updated after internal reviews and final

version submitted to the European

Commission

Internal review history:

Reviewed by Date Summary of comments

Peter Rosengren (CNET) 2012-02-28 Approved with comments

Jonathan Simon (FIT) 2012-02-27 Approved with minor revisions

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects

solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 3 of 29 Submission date: 2012-02-29

Index:

1. Executive summary .. 4

2. Introduction .. 5

2.1 Overview of the ebbits project ... 5
2.2 Purpose, context and scope of this deliverable .. 5
2.3 Background .. 5

3. Research Background and Problem Definition ... 6

4. The Entity Name System - the OKKAM Approach 9

5. Matching within Linked Data Approaches .. 11

5.1 The Silk Linking Framework ... 11
5.2 The LIMES Framework .. 14

6. Matching Data from several, differently trusted Sources 16

7. Semantic Interoperability of Web Services .. 18

8. Semantic Interoperability within the Ebbits Architecture 20

8.1 The example use-case scenario .. 20
8.2 The semantic knowledge model .. 21
8.3 The common access to semantic knowledge ... 23
8.4 The ontology support for the rule-based systems 25
8.5 Ontology support for rule composition ... 27

9. Conclusions ... 28

10. References .. 29

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 4 of 29 Submission date: 2012-02-29

1. Executive summary

This deliverable reports on the analysis and design of semantic interoperability mechanisms. It

belongs to the Task T4.3 “Mechanisms for semantic interoperability in heterogeneous scenarios” of
the ebbits project. This task is concerned about the problem that the distributed ebbits information

producers / consumers will need a common understanding of data they are processing in order to
interact. Often heterogeneous data sources contain information about the same topic or the same

item but they use different wording and terminology. By identifying entities (objects, data instances)
referring to the same real-world entity, the relationships between information in heterogeneous data

sources can be made explicit also. Therefore the task and also this report investigate the

appropriateness of different strategies to provide such a common understanding in the ebbits
project and also propose some approaches and designs for the semantic interoperability in the

ebbits project. After the problem definition we evaluate different research approaches with regard to
their potential use in the ebbits project. Furthermore, the special case of web services is assed and a

design for using a common vocabulary and common instances throughout the project is proposed.

The report starts with an introduction to research in this area and gives a formal definition of the
special instance of the semantic interoperability problem which has to be solved within the ebbits

project for such a common understanding. It is called instance matching (also referred to various
other names in different communities).

In the next section, an approach from the former EU project OKKAM is considered. It proposes the

Entity Name System for providing each requester with an URI for the corresponding resource but it
needs additional infrastructure.

The next section reports on matching approaches within the Linked Data field. Here, the Silk tool
seems promising to achieve semantic interoperability of the ebbits middleware with data from

(legacy) mainstream business systems.

An approach to interlink data from several sources, which can be trusted to various degrees, it

presented in Section 6.

The next section addresses especially the semantic interoperability within Web services.

In the last section before the conclusion, a design for using a common vocabulary and common

instances for all the components in the ebbits project is presented. With help of examples from the
agricultural scenario it is also explained, how the ontology manager can be queried for the right

term.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 5 of 29 Submission date: 2012-02-29

2. Introduction

2.1 Overview of the ebbits project

The ebbits project aims to develop architecture, technologies and processes, which allow businesses

to semantically integrate the Internet of Things into mainstream enterprise systems and support
interoperable real-world, online end-to-end business applications. It will provide semantic resolution

to the Internet of Things and hence present a new bridge between backend enterprise applications,

people, services and the physical world, using information generated by tags, sensors, and other
devices and performing actions on the real world.

The ebbits platform will support interoperable business applications with context-aware processing
of data separated in time and space, information and real-world events (addressing tags, sensors

and actuators as services), people and workflows (operator and maintenance crews), optimisation

using high-level business rules (energy and cost performance criteria), end-to-end business
processes (traceability, lifecycle management), or comprehensive consumer demands (product

authentication, trustworthy information, and knowledge sharing).

The ebbits platform will feature a Service-oriented Architecture (SoA) based on open protocols and

middleware, effectively transforming every subsystem or device into a web service with semantic

resolution. The ebbits platform thus enables the convergence of the Internet of People (IoP), the
Internet of Things (IoT) and the Internet of Services (IoS) into the “Internet of People, Things and

Services (IoPTS)” for business purposes.

The ebbits platform will be demonstrated in end-to-end business applications featuring connectivity

to and online monitoring of a product during its entire lifecycle, i.e. from the early manufacturing
stage to its end-of-life. The project will develop, implement and demonstrate two ebbits IoPTS

applications. The first application demonstrates real-time optimisation metrics, including energy

savings, in manufacturing processes. The other demonstrates online traceability with enhanced
information on food.

2.2 Purpose, context and scope of this deliverable

This deliverable belongs to the Work Package 4 of the ebbits project, which aim is to research,
develop and implement the infrastructure enabling a unified access to the semantic knowledge of

the ebbits platform. The aim is to create a framework for the process of knowledge creation, access,
maintenance and storage.

Furthermore, it contributes to the Task T4.3 “Mechanisms for semantic interoperability in

heterogeneous scenarios” of the ebbits project. This task is concerned about the problem that the
distributed ebbits information producers / consumers will need a common understanding of data

they are processing in order to interact. This deliverable investigates the appropriateness of different
strategies to provide such a common understanding in the ebbits project and also propose some

approaches and designs for the semantic interoperability in the ebbits project.

This deliverable is based on results of the previously published deliverables D4.2 “Knowledge
representation formalism analysis” and D6.2 “State-of-the-Art design and implementation of systems

with persistent and high volume data” and its results will be used in the upcoming deliverables
D4.8.1, D4.8.2, D4.8.3 “Implementation of semantic interoperability mechanisms with the ebbits

platform” and D6.4 “Implementation of service description, matchmaking and time scale moderation
mechanisms”.

2.3 Background

This deliverable contributes to the Task T4.3 and uses outcomes of deliverables D4.2 and D6.2.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 6 of 29 Submission date: 2012-02-29

3. Research Background and Problem Definition

The description of work of Task T4.3 expects that strategies should be examined which could lead to

a common understanding of all the data within the ebbits project by making the relationship

between information in heterogeneous data sources explicit. For this objective, a semantic
representation of the data stored in multiple sources is essential (Jean-Mary, Shironoshita, &

Kabuka, 2009). This representation will facilitate the definition of a correspondence among entities
from different sources and the resolution of conflicts among sources and should ultimately automate

the integration process.

The main problem in this information integration process is the task of identifying entities (objects,
data instances) from different sources refererring to the same real-world entity. If this objective is

achieved then the information from these multiple sources can be safely combined and this allows
ebbits applications to process queries and do reasoning in a homogeneous way over heterogeneous

data sources as reflected in the domain scenarios. This task is not easy and it is time consuming and
thus imposes a crucial limit for large-scale, dynamic information integration (Bouquet, Stoermer, &

Niederee, 2008).

This problem has already been a topic of research for more than 50 years (Noessner, Niepert,
Meilicke, & Stuckenschmidt, 2010). During this time it has been considered under various facets and

from different communities, including the Artificial Intelligence research community, the Database
research community, industry and lately, the Semantic Web research community. Therefore, it has

many names and is among others referred to as object matching, entity matching, duplicate

indentification, record linkage, entity resolution, reference reconciliation, data deduplication, instance
identification, name matching, data cleaning, ontology matching, instance matching (Köpcke &

Rahm, 2009; Veshcheva, 2011; Elmagarmid, Ipeirotis, & Verykios, 2007, Noessner, Niepert, Meilicke,
& Stuckenschmidt, 2010).

The majority of the existing approaches to this problem tackle the task of matching database
records while recent approaches focus mostly on graph-based data representations extended by

additional schema information (Noessner, Niepert, Meilicke, & Stuckenschmidt, 2010). The latter

methods refer to the problem as ontology matching / terminological alignment and instance
matching. As in the ebbits project, we also rely on semantic technologies like ontologies and graph-

based data representations (possibly extended with further schema information) (see also
Deliverables D4.2 “Knowledge representation formalism analysis”and D6.2 “State-of-the-Art design

and implementation of systems with persistent and high volume data” (Hreno, Nutakki, Knechtel,

Furdik, & Sabol, 2011; Martin & Ahlsén, 2011)), in this deliverable we will focus on the modern
Ontology / Semantic Web based approaches (for an overview about the database approaches see

(Elmagarmid, Ipeirotis, & Verykios, 2007)).

In terms of the Semantic Web community, we can give a general formal definition for the task of

making the relationship between entities from different sources explicit:

Definition 1 (Noessner, Niepert, Meilicke, & Stuckenschmidt, 2010): Given ontologies O1 and O2, let
q be a function that defines sets of matchable entities q(O1) and q(O2). A correspondence between

O1 and O2 is a four tuple <e1, e2, r, n> such that e1 (O1) and e2 (O2), r is a semantic relation and

n is a confidence value. An alignment M between O1 and O2 is a set of correspondences between O1

and O2.

This definition covers a wide range of correspondences by specifying what are matchable entities, a
semantic relation, and a confidence value. One important difference between diverse matching tasks

is determined by the relation q on the set of matchable entities (Noessner, Niepert, Meilicke, &
Stuckenschmidt, 2010). We can distinguish two cases here:

 Links between terminological entities: This task arises due to the heterogeneity of

vocabulary between different ontologies: the same concept (e.g. “author”) or property (e.g.
“last name”) may be referenced to through different URI’s in linked data or different names

in the T-Boxes of the ontologies, and therefore may not be recognized as the same concept

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 7 of 29 Submission date: 2012-02-29

or property in two different vocabularies. The alignment M in above definition would be
providing equivalence or subsumption links between concepts and properties for this case.

The most common strategies to reach such an alignment are structure-based (e.g. looking

at the hierarchy between concepts or restrictions between concepts and properties) or
methods to compute and aggregate value similarities. In the ebbits project, the ontologies

are constructed by the Work Package 4 and a common ontology will be used as described in
Section 8. Therefore, in this deliverable we do not focus on the terminological matching as

this should always be a small or non-existing problem within the ebbits project and thus,
solvable by some manual effort (for details on example ontology matching systems RiMOM

and ASMOV please confer (Li, Tang, Li, & Luo, 2009; Jean-Mary, Shironoshita, & Kabuka,

2009)).
 Links between instances: This task requires identification of instances, i.e., the same real

world object (e.g. “Dresden”) may be assigned different URI’s in different RDF repositories

or different names in the A-Boxes of ontologies, and therefore may not be recognized as the
same instance. The assignment of different URIs to the same resource is thereby called an

URI alias. The alignment M in above definition would provide pairs of instances that refer to

the same real world object and thus, the semantic relation is that of identity for this case.
Such an identity relation can be expressed between RDF repositories as an

http://www.w3.org/2002/07/owl#sameAs (owl:sameAs) link between the URI aliases
(Veshcheva, 2011). It is usually derived by inferring similarities between instance labels and

datatype properties. In the ebbits project, this task should be again avoided as much as
possible and the identity of instances should be common over all compomenents as

described in Section 8. This approach is similar to the Entity Name System which is

delineated in Section 4. However, the ebbits middleware with all its components should also
be connected to mainstream (legacy) Enterprise systems. Although these systems usually do

not contain a lot of terminological knowledge in form of ontologies, instances referring to
the same object in these systems and and the ebbits middleware have to be matched. As

already specified in deliverable D6.2 “State-of-the-Art design and implementation of systems

with persistent and high volume data”, the data in these systems should be converted to
linked data and therefore the RDF format or alternatively, the query language is mapped

(for details see (Martin & Ahlsén, 2011)). As soon as the information is in this graph-based
data representation format, special matching algorithms for linked data can be used and

these are described in Section 5. The linked data approaches usually work incrementally
which eases the handling of large data volumes.

In the above definition, there is also a confidence value n for a correspondence given. This value
quantifies the degree of trust in the correctness of the proposed correspondence (Noessner, Niepert,

Meilicke, & Stuckenschmidt, 2010). If the correspondence is generated automatically by a matching
system, this value is usually an average of scores from different matching strategies. In general, due

to the large variety of data sources and entities to match there is no single “best” matching strategy.

A single strategy which performs very well on one domain can be very bad for a different match
problem in another domain. Therefore, it is often useful and necessary to combine several methods

for improved matching quality (Köpcke & Rahm, 2009). Furthermore, if one wants to compare
entities from a set A with entities from a set B, then in general |A|*|B| comparisons are necessary.

In this case, each object from set A is compared with each object from set B. This approach leads

for already medium-sized sets to very high computing costs. For larger datasets, it is therefore
necessary to apply optimization to avoid unnessary comparisons and to reduce the search space for

matching and achieve sufficiently fast execution times. Such optimizations are so-called blocking
strategies and they partition the input sets and then, pairs are only compared within a partition.

Doing so may lead to poorer results of the matching as correct pairs can now lie in different
partitions.

In (Köpcke & Rahm, 2009), several high-level requirements which can be used to compare different
matching approaches, are defined:

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 8 of 29 Submission date: 2012-02-29

 Effectiveness: The main goal for matching is to achieve a high-quality match result. This

criterion is usually measured in recall and precision, i.e., all real corresponding pairs but no
other should be included in the result.

 Efficiency: The matching approach should be fast even for large datasets.

 Genericity: The algorithm should be applicable to different match problems from various

domains and support different data models.
 Online/Offline Matching: A matching system should be applicable to online and offline

match tasks, i.e., on-demand matching for interactive data integration steps such as

mediated quieries or data mashups based on specific user input or pro-active

homogenization. The offline matching can be further categorized into fully matched
beforehand or so-called “pay as you go” approaches. In general, oflline matching is less

time critical and therefore allows the usage of more matching strategies and the application
to larger datasets. Most of the current approaches do offline matching.

 Low manual effort: The manual effort to determine parameters and the combination of

matching strategies should be as low as possible. To facilitate this, some of the approaches

use machine learning techniques with training data in order to learn automatically how to
self-tune the system. With these techniques, the additional question of selection and

provenance of correct training data arises which could also lead to further manual effort.

In the ebbits project, the considered approaches should be effective and efficient. The genericity

can be restricted for the moment to our application domains, the food tracking and the
manufacturing scenario. Furthermore, at the moment, the use cases do not foresee complicated

and unanticipated ad-hoc end-user queries such that we can concentrate on the prevailant
offline approaches. The manual effort should be low but as we already have a lot of domain

knowledge about the ebbits use cases, this knowledge should be integrated to improve the
quality of the results.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 9 of 29 Submission date: 2012-02-29

4. The Entity Name System - the OKKAM Approach

The FP7 EU Large-scale Integrating Project OKKAM – Enabling a Web of Entities (contract no.

ICT-215032), which ran from 2008 until 2010 and is presented here because it was exactly about

instance matching, already recognized that identifying information from different sources which refer
to the same (real world) entity is a crucial challenge in instance-level information integration

(Bouquet, Stoermer, Niederee, & Mana, 2008). The integration of various information islands into a
global Semantic Web should be based on the use of URIs. If two RDF graphs have two nodes

labeled with the same URI and additionally there are no URI aliases and no URI collisions

(assignment of the same URI to two different resources) in and between these two graphs, the
common nodes can be collapsed forming a bigger graph. This way, the information about the

resource labeled with the URI and its related nodes is automatically integrated from the two sources.
Therefore, both, URI collisions and URI aliases, should be avoided and the latter one is more difficult

to achieve.

One possible solution, which aims at abolishing URI aliases and this especially on the instance level,

is the so-called Entity Name System (ENS) which was proposed as part of the OKKAM project. The

ENS should be a web-scale infrastructure for supporting reliable and trustworthy the reuse of URIs.
It should work for any type of entity and across decentralized and independent RDF repositories

(Bouquet, Stoermer, Niederee, & Mana, 2008). ENS should be an essential part of the Semantic Web
as it would allow information integration by simple RDF graph merging.

The main functionality of the ENS can be generally described as: The input to the system is given by

any representation of an entity (e.g. a set of keywords, a paragraph of text, a set of key-value pairs,
a graph …). With this input and matching techniques the systems decides if an URI for this entity is

already available in the entity repository. If this is the case, the system will return the URI or at least
a ranked list of top candidates. Otherwise, the ENS issues and stores a new URI. In both cases,

different users are given the same URI for this resource (Bouquet, Stoermer, Niederee, & Mana,
2008).

There are a lot of technical and organizational issues to be solved for such an approach (Bouquet,

Stoermer, Niederee, & Mana, 2008):

 Dealing with entity types: The question arises how far and in what granularity the

system should support types and schemas for the entities. On the one hand, a strong type

system can increase effectiveness and efficiency of the internally used matching strategies.
On the other hand, for a global approach it is difficult to agree on common types, only for

very general top-level types can a consensus be reached across organizations and

communities.

 Repository maintenance: The technical questions are here about aging information and

the need to update information about entities in the repository to adjust to changed entity

representations in the real world.

 Trust, privacy and ownership: The questions of access control for a distributed system

and very different users with various crucial security and privacy requirements have to be

addressed.

 Scalability: If the system is used by a large amount of users, a lot of matching tasks have
to be solved in parallel as ENS should be applied in automated search and reasoning

problems.

The ENS is implemented as a federated architecture and depicted in Figure 1. In addition to the
distributed system, the architecture also proposes a so-called local node. This node is foreseen for

organizations which want to store their entities on their own infrastructure for reasons of security for
highly sensitive information or because a large amount of these entities are only of interest inside

the corresponding institution (Bouquet, Stoermer, Niederee, & Mana, 2008). The identifiers used

inside the architecture are guaranteed to be unique across space and time and thus avoiding URI
collision.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 10 of 29 Submission date: 2012-02-29

In the ebbits project, we retain the idea from this approach that we should avoid URI aliases as
much as possible but we do not setup such an entity name system as an additional infrastructure.

Even so we do not aim for a global service; we also want to avoid setting up a complete local
OKKAM node as this would need additional resources and effort. Instead we use a common

vocabulary as defined in Section 8 and do pro-active homogenization as specified in the next
section.

Figure 1: The Architecture of OKKAM ENS, Source: (Bouquet, Stoermer, Niederee, & Mana, 2008)

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 11 of 29 Submission date: 2012-02-29

5. Matching within Linked Data Approaches

As already pointed out in Section 3, information about instances in legacy systems should be

converted into the linked data RDF format (see also (Martin & Ahlsén, 2011)). Once the data is in

this graph-based representation, it can be combined with the ontologies and instances already in the
ebbits project, which are also in the RDF format and also use URI references. Of course, the

information from the two sources has to be matched in order to identify data instances referring to
the same real-world entity. In this section, special characteristics of matching in the context of linked

data and two suitable approaches from the Semantic Web community are presented.

One of the principles of linked data is that links between different data sources should be
established. This principle does not work so well in practice: There are already more than 25 billion

RDF triple of data published in different sources but only less than 3% of them are connected via
links (Veshcheva, 2011). If such links exist in linked data, there between two URIs and denote the

identity via owl:sameAs. Why does this problem of URI aliases arise at all? There are different
reasons:

 Differences in opinions: The semantic web is open and it therefore is very likely that

different providers publish data about the same real world object. Thereby, there exist

different opinions and points of view.

 Traceability: If different URIs are used from various publishers, then the provenance of

the data can be tracked.

 No single point of failure: The web is inherently distributed and that makes one

institution responsible for all URIs very unlikely.

Thus, for the Linked Data community, there will be always URI aliases, which are created and later

have to be linked together by owl:sameAs. In doing so, the creation of links is again distributed, i.e.,

different users can provide links for the same two data sources. Additionally, the publisher of the
data can already provide links of his/her data to other sources. Thus, the effort of linkage of data

sources can be shared. This aspect of linked data can also be a disadvantage because the quality of
the links can be low. Therefore, the provenance of the links should always be taken into account.

Furthermore, it is an evolutionary, “pay as you go” approach, where additionally links can always be
added and one does not have to start with a complete set (Veshcheva, 2011).

For small and static data sets, the interlinking can be done manually while larger data sets generally

require an automated or semi-automated approach (Health & Bizer, 2011). If the data sets contain
accepted naming schemata, for example the Global Trade Item Numbers (GTIN), the EPC product

code or the International Standard Book Number (ISBN), such identifiers should be exposed either
as part of the URIs or as property values. Such a value of the property uniquely identifies the

subject of the RDF triple and thus, enables simple key-based matching approaches where just the

key pattern have to be compared. Otherwise, if such common identifiers do not exist across data
sets or if the key values are missing, linked data approaches use the same similarity-based

strategies as in database or ontology matching: They aggregate the different similarity scores from
lexical and value matchers as well as property-based comparisons of related entries. If all (or most)

of the comparisons result in high similarity values and the corresponding aggregations are above a

given threshold, the compared instances are interlinked by an owl:sameAs statement. A difference
to other research fields is that in linked data scenarios entities in one data source often come from

different vocabularies and no consistent RDF or OWL schemata spanning this data source exists. In
the following, we present two tools that allow matching heuristics to be defined declaratively and to

automate the process of generating RDF links based on these definitions.

5.1 The Silk Linking Framework

The general features and the architecture of the Silk framework has already be described in

Deliverable 6.2 “State-of-the-Art design and implementation of systems with persistent and high
volume data” and the reader is referred to (Martin & Ahlsén, 2011) for details.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 12 of 29 Submission date: 2012-02-29

The Silk – Link Specification Language (Silk-LSL) allows in a declarative manner to specify the
heuristics and the combination of them for deciding whether a semantic relationship exists between

two instances (Volz, Bizer, Gaedke, & Kobilarov, 2009). Furthermore, data access parameters and

configurations for caching, indexing and preselection features are defined in Silk-LSL. The following
is a first abbreviated example proposal for a Silk-LSL specification for the ebbits project, which would

be employed to match device and event instances:

01 <Silk>
02 <DataSource id="event">
03 <EndpointURI>http://server1.ebbits.eu/Event/sparql</EndpointURI>
05 <DoCache>1</DoCache>
06 <PageSize>1000</PageSize>
07 </DataSource>
08 <DataSource id="device">
09 <EndpointURI>http://server2.ebbits.eu/Device/sparql</EndpointURI>
10 </DataSource> ………….
22 <LinkType>owl:sameAs</LinkType>
23 <SourceDataset dataSource="event" var="a">
24 <RestrictTo>
25 ?a rdf:type event:WaterflowEvent
26 </RestrictTo>
27 </SourceDataset> ………….
51 <AVG>
52 <MAX optional="1" weight="5">
62 <Compare metric="stringEquality" optional="1">
63 <Param name="str1" path="?a/event:name" />
64 <Param name="str2" path="?b/device:name" />
65 </Compare>
66 <Compare metric="stringEquality" optional="1">
67 <Param name="str1" path="?a/event:channel" />
68 <Param name="str2" path="?b/device:channel" />
69 </Compare>
70 </MAX>
71 <Compare metric="numSimilarity" optional="1" weight="2">
72 <Param name="num1" path="?a/event:idNumber" />
73 <Param name="num2" path="?b/device:idNumber" />
74 </Compare>
75 </AVG>
77 <Thresholds accept="0.9" verify="0.7" />
78 <Limit max="1" method="metric_value" />
79 <Output acceptedLinks="device_accepted_links.n3"
80 verifyLinks="device_verify_links.n3" format="n3" mode="truncate" />
81 </Interlink>
82 </Silk>

In the first 10 lines the endpoints of the data sources are given. Line 22 specifies the link type and

the lines afterwards restrict the search for the events to a specific type. From line 51 on the different
matching strategies are defined, in our example, two string matchers and one numerical value

matcher. Additionally, it is stipulated that maximum value resulting from the string matchers should

be taken and if at least one of them defines a match, this result should be weighted by the factor 5.
The resulting value is then averaged with the value from the numerical matcher. The last lines

define threshold for automated linking and for showing it to the user. Furthermore, the maximum
number of outgoing links is also declared. In the end, the output format and the output file is

specified. Of course, this initial specification would have to be adapted to the linked data use cases
in the ebbits project, tested, iteratively improved and extended. The use case partners in ebbits

would also be able to informally give some more domain knowledge which then can be easily

expressed in this declarative specification language.

In practical matching problems, data cleanliness and completeness problems are not always visible

from the start on. For example, two data sources, that support a common naming schema, seem to
look like an easy key-based matching, but if a large number of such key values are missing,

additional similarity-based techniques are necessary. Such data quality problems may not be noticed

until the actual computation of links (Volz, Bizer, Gaedke, & Kobilarov, 2009). Therefore, the process
is usually iterative and the Silk framework supports the users with fine-tuning their linking

specification by providing a web interface for evaluating the correctness and completeness of
generated links. It is depicted in Figure 2, where the users has entered a set of computed links for

inspection and the framework then recomputes these links and displays the resulting similarity

scores for each link.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 13 of 29 Submission date: 2012-02-29

Figure 2: Comparing resource pairs with the Silk web interface, Source: (Volz, Bizer, Gaedke, & Kobilarov, 2009)

It is also possible to do a drill-down by clicking on one of the links in the overview table. Another
view is displayed which is depicted in Figure 3. One can see in this figure in detail how the different

matching values for set, string and numbers are computed and aggregated for this drug comparison
example. This information allows the users to spot bad behaving parts of their linking declarations.

As the world is dynamic, datasets change and are extended over time. With the changing sources,

also the links between them should be updated by introducing new necessary RDF links and
removing now superfluous links. For this objective, in (Volz, Bizer, Gaedke, & Kobilarov, 2009), the

Web of Data – Link Maintenance Protocol (WOD-LMP) is proposed which automates the
communication between two data sources, the link source and the link target. The protocol

supports:

 Initial linking: A notification can be send from the link source to the target source that the

link source has initially published links pointing to the target source. The target source may
then consider setting back-links.

 Periodic update: The link source requests a list of changes from the target source and

uses this information to recompute existing and new links.

 Continuous monitoring: The link source subscribes to changes of specific resources in the

target source by sending a link notification message.

The Silk framework seems suitable to be used in the ebbits project. Thanks to its declarative nature
and many contained matching strategies it should be possible to easily encode the domain

knowledge about our application scenarios in this matching framework. The Web interface will be

helpful to do this in an iterative fashion. Furthermore, it may be worthwhile to use WOD-LMP for
continuous updates.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 14 of 29 Submission date: 2012-02-29

Figure 3: Detailed drill-down into a comparison of a pair of drug instances, Source: (Volz, Bizer, Gaedke, & Kobilarov,
2009)

5.2 The LIMES Framework

This framework was especially developed as a time-efficient approach for the large-scale matching

of instances in metric spaces. It uses the triangle inequality in metric spaces to filter out a large
number of those instance pairs which approximated similarity value can’t be above the given

threshold (Ngonda Ngomo & Sören, 2011). Therefore, it realizes a blocking strategy as already

described in Section 3. After the filtering process the real similarity values of the remaining instance
pairs are then computed and the matching instances returned. In contrast to other blocking

strategies, the LIMES approach does not sacrifice precision and therefore, it does not loose correct
pairs.

The idea is the following (Ngonda Ngomo & Sören, 2011): Given three points x, y and z and a metric
m, the triangle inequality entails that m(x, y) ≤ m(x, z) + m(z, y). After some transformation we get

the following boundary condition in metric spaces:

m(x, y) − m(y, z) ≤ m(x, z) ≤ m(x, y) + m(y, z)

From this condition it follows that the distance between a point x to any point z can be

approximated if one knows the distance from x to a reference point y and from y to z. Such a
reference point can represent a portion of the metric space and is then called an exemplar. This

partitioning is graphically depicted once more in Figure 4. From the condition it follows furthermore,

that the real distance from x to z can only be smaller than a given similarity threshold , if the lower

bound is smaller than . The contrapositive of this observation is the following:

m(x, y) − m(y, z) > θ ⇒ m(x, z) > θ

If the distances from all instances t of the target source to exemplars are known, one can compute
an approximation of the distance from all instances s from the source to all t and filter out all those

pairs for which the approximation is already greater than the threshold. Afterwards, only for the
remaining pairs the real distance has to be calculated.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 15 of 29 Submission date: 2012-02-29

Figure 4: Approximation in the LIMES framework, Source: (Veshcheva, 2011)

In general, the workflow in the LIMES framework, which is also illustrated in Figure 5, consists of

four steps (Ngonda Ngomo & Sören, 2011), where the source data set S, the target data set T and

the threshold are given as input:

1. A set E of exemplars is determined. Exemplars are instances in the metric space and they
should be distributed in a uniform way in that space. To achieve this goal, they are chosen

to be very dissimilar. Furthermore, the distances of the exemplars to all t T are calculated

and each t T is assigned to its nearest exemplar. The number of exemplars can be set to

T.

2. For each s S and each e E, the distance m(s,e) is figured out, which is used in turn to

approximate the distance from s to every t T. The filtering takes place here and can

reduce a large number of comparisons compared with the brute force approach.

3. For the remaining pairs (s,t) the real distance m(s,t) is computed.

4. Finally, for the pairs with a high enough similarity the matching (s,t,m(s,t)) is stored in a

user-specified format.

The LIMES framework could be used ebbits project as a preprocessing step to reduce the number of

full comparisons needed. Of course, it is restricted at the moment to metric spaces, thus, for

example in the manufacturing scenario the position of the items/machines should be used as metric.

Figure 5: General workflow in the LIMES framework, Source: (Ngonda Ngomo & Sören, 2011)

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 16 of 29 Submission date: 2012-02-29

6. Matching Data from several, differently trusted Sources

From the approaches in Section 5 it is expected that they solve many local, pairwise data integration

problems involving two different sources. The quality of such a local solution will differ because of

diverse employed matching strategies and also the amount of effort that was undertaken. Thus, we
can have a different trust level in each of these pairwise data integration results. As already

described in Section 5, everybody can publish links to every topic and therefore, it is probable that
we also have conflicting links from several sources with different trust levels. For such a situation,

which calls for a large-scale, distributed and uncertain data management, the framework idMesh is

proposed. It uses an analysis based on graphs of instances and their uncertain links. Furthermore, it
also addresses temporal discrimination which distinguishes entities pertaining to the same referent

but taken at different points in time. The approach will only be sketched here with an example,
which is depicted in Figure 6; the reader is referred to (Cudre-Mauroux, Haghani, Jost, Aberer, & de

Meer, 2009) for details.

Figure 6: Two sources relate four entities, Source: (Cudre-Mauroux, Haghani, Jost, Aberer, & de Meer, 2009)

Figure 6 illustrates a simple example, where one trusted source s1 and one unknown source s2 relate

four entities e1 to e4 by defining equivalence links lk between them with various confidence values c.

Two graphs are created from the information on the left side of the figure: a bipartite source graph
relating sources to the links they define and an entity graph specifying how entities are related

through the links. As s2 is the unknown source, its proposed links should be considered with care. By
observing the source graph and furthermore, taking into account that an equalivalence relation is

symmetric and transitive, conflicts for various links are detected: The link between e2 and e4 is
defined as non-equivalent by s1 and equivalent by s2. Furthermore, from e1 e3 e3 e4 should follow

e1 e4, which is in conflict with the trusted source s1. In the end, the algorithm in (Cudre-Mauroux,

Haghani, Jost, Aberer, & de Meer, 2009) lowers the confidence of the links declared by s2 and
concludes that e1, e2, and e3 are equivalent and different from e4.

From the source graph and the entity graph, the approach in (Cudre-Mauroux, Haghani, Jost,
Aberer, & de Meer, 2009) finally constructs a so-called constraint satisfaction-based factor-graph,

which is solved by sum-product operations. Thereby, this factor-graph takes into account the

following conditions:

 Initial links with their confidence values which originate from different sources

 The trust values for these sources

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 17 of 29 Submission date: 2012-02-29

 Symmetry and transitivity of the equivalence relation

For the simple example above, the resulting graph is depicted in Figure 7.

If it appears necessary that information about the same entities from several sources with different

trust levels have to be integrated in the ebbits project, the idMesh system could be applied.

Figure 7: The resulting factor-graph with link values, trust values and constraints, Source: (Cudre-Mauroux, Haghani,
Jost, Aberer, & de Meer, 2009)

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 18 of 29 Submission date: 2012-02-29

7. Semantic Interoperability of Web Services

Web services technology is in focus of the ebbits project as a fundamental mechanism enabling

flexible communication between physical devices and inner platform components in a highly modular

system architecture. An interoperable interfacing and seamless exchange of data between various
potentially heterogeneous web services is required in such a service-based system. The

interoperability of web services is provided by a common underlying communication protocol and
messaging system (SOAP, XML-serialized HTML, JSON) as well as by a standardized service

interface, usually described in a machine-processable format of WSDL or in a lighter description of

RESTful web API.

However, web services are often employed in applications requiring a composition of web services

into more complex workflow structures and process chains. The interoperability specified on the
level of protocols and interfaces then needs to be extended towards a more advanced description of

the meaning of service inputs and outputs. This extension is typically handled by an approach of
semantic web services (McIlraith, Cao Son, & Zeng, 2001), which enables referencing the IOPE

parameters (i.e. inputs, outputs, preconditions, and effects) of particular services to semantic

structures such as shared ontologies, conceptual service models, or Linked Data constructions
(Payam Barnaghi, Bauer, & Meissner, 2011). Semantically described IOPE characteristics then enable

a data exchange and workflow composition, i.e., orchestration and choreography, of internally
heterogeneous web services that are generally grounded in possibly incompatible service

implementations. The data mapping and transformation principle, enabled by semantic web service

annotations and ontological domain models, is presented in Figure 8. The output message of WS1 is
transformed to a concept C1, which can be transformed directly to an input message of WS2, or

may be mediated to the concept C2 and then transformed to the WS2 input. This way, WS1 and
WS2 are dynamically composed into a workflow, using the semantic data mediation and

transformation.

Figure 8: Semantic data mapping and transformation, Source: (Nagarajan, Verma, Sheth, Miller, & Lathem, 2006)

An outline of the most frequently utilized formalisms and frameworks enabling semantic

interoperability of web services was provided in the Deliverable D4.2. It namely includes:

 SAWSDL: Semantic Annotations for WSDL and XML Schema (Farrell & Lausen, 2007), an

extension of basic WSDL service descriptions. This formalism is supported by the SAWSDL4J

API interface, Woden4SAWSDL parser, and Radiant eclipse plugin for creating and

publishing SAWSDL and WSDL-S service interfaces.

 OWL-S: the Semantic Markup for Web Services (Martin D. et al., 2004), an ontology and/or

formal language for semantically describing properties and capabilities of web services. By

providing the generic concepts of Service Profile, Service Model, and Service Grounding,
OWL-S supports web service manipulations such as the capability-based discovery,

automatic composition, invocation, and monitoring of the service execution. Moreover, the

OWL-S is compatible with SAWSDL descriptions. It uses WSDL as its grounding mechanism;

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 19 of 29 Submission date: 2012-02-29

however, it is rather flexible and is not restricted to WSDL as the only service technology. A
relatively wide range of tools enabling OWL-S development include editors, service

composers, matchmakers, etc.

 WSMO: the Web Service Modelling Ontology (de Bruijn et al., 2005), a conceptual model

specifically developed for describing semantic web services. WSMO framework is supported
by a set of tools (WSMO Tools), including the WSMO Studio toolkit for editing and

maintenance of all major WSMO components - ontologies, goals, web services, and
mediators. However, despite its complexity, the development of WSMO was stopped in year

2005 and the framework is nowadays quite obsolete.

A more detailed comparison and benchmark of these frameworks can be found, for example, in

(Nagarajan, Verma, Sheth, Miller, & Lathem, 2006).

With respect to the existing status of the design and implementation of the ebbits system, together
with the underlying LinkSmart middleware, the OWL-S framework seems to be the best candidate

for solving the semantic interoperability of web services in ebbits. This recommendation takes into
account the OWL/RDF as the adopted formalism for ebbits ontologies, as well as the OWL-S-

compatible OSGi-based web service implementation in LinkSmart. However, if testing on real-world

ebbits data will indicate performance problems caused by the complexity of OWL-S, the SAWSDL
framework can be employed as an alternative.

An example of employing the SAWSDL approach to support the semantic interoperability of OSGi
web services in IoT applications is presented in (Gouvas, Bouras, & Mentzas, 2007). Semantic web

service descriptions were particularly employed for handling data and message heterogeneities
between interoperating services, search and discovery capabilities, and process composition.

Figure 9: The OWL-S ontology adapted for the IoT domain, Source: (Payam Barnaghi, Bauer, & Meissner, 2011)

A broader semantic modelling approach for different components in an IoT framework is presented

in (Payam Barnaghi, Bauer, & Meissner, 2011). The OWL-S is declared here as a minimalistic

approach for describing semantic web services, which provides both rich expressive descriptions and
well-defined semantics. Thanks to its flexibility, OWL-S was employed as an upper ontology for the

IoT-adapted service model, depicted in Figure 9. The Service element is a web service interface that
enables standardized interactions with other services in a process flow. The Resource represents a

physical entity (i.e., a sensor, device, etc.) in the digital world, including the information on location,
invocation, execution, etc., of the corresponding service. The Entity element is attached to a

concrete device and contains a set of semantic attributes that characterize the service, including the

IOPE parameters. In this model, physical entities and respective services are not connected through
fixed links that are a part of the entity or resource models, but instead are linked through separately

modelled associations. This way, a single service may be associated with multiple entities at the
same time (e.g., a temperature sensor may provide the indoor temperature of a room and at the

same time the ambient temperature of all the people who are currently in the room). The proposed

OWL-S extension enables reasoning, discovery, and search facilities on all three elements, assuming
that the services, entities, and/or resources are further linked to semantic representations of

respective domain ontologies.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 20 of 29 Submission date: 2012-02-29

8. Semantic Interoperability within the Ebbits Architecture

The core ebbits components enable application developers to implement the logic of the applications

mainly in the way of defining rules. This approach is very flexible, as it provides the possibility of

creation of specific logic declaratively, what leads to the reduction of the amount of the
implementation code. The rule-based systems are provided by:

 eventing subsystem using the rules for filtering, aggregation and storing the events

 context-awareness (and self-*) subsystem specifying the rules for the basic application

behaviour

 business rules specifying the higher level application logic defined in terms of business goals

which must be accomplished

Formally, rules are a declarative knowledge representation, which uses symbols or procedures in the

assumption and consequence parts of the rules. These symbols usually represent the properties of
the application entities, application states, actions to take, etc. As the ebbits components using the

rules are implemented separately, in one concrete application they have to share the knowledge
about the application entities in some common way. Otherwise, each ebbits component will have to

implement the same data structures representing the application specific entities by itself. This often
leads to redundant data structures representing the same application entities (defined for each

component) and to possible errors caused by possible differences in the data structures representing

the same entities by different components.

To ensure that all ebbits components will share the same knowledge representation of the

application entities, a common knowledge representation must be provided. All knowledge is
represented in the form of ontologies handled by the ebbits application ontology manager. The

application ontology manager serves as the unique endpoint to all knowledge by providing dedicated

knowledge retrieval services common to all ebbits components.

Semantic interoperability between the ebbits components can be ensured only in the case when this

component shares the knowledge model and its interpretation (to work with information about the
same entities in the same way).

This section aims to provide the conceptual design of the internal semantic interoperability
mechanisms by defining the semantic models and the uniform access to the knowledge in various

ways. To be able to describe the interoperability techniques as simple and clearly as possible, the

conceptual design will be described using a concrete simple use-case. For this use case, the step-by-
step processes and aspects of the interoperability mechanisms will be described by concrete

examples. In the examples, the description of the ontology models and application rules will be
described in the form of simple illustration pseudo-code.

8.1 The example use-case scenario

On the farm, there are pens and pigs moving in the farm area. Pigs may enter and leave pens. In
each pen, there is a door RFID tag, which is triggered when a pig enters the pen. Each pen also

contains a thermometer sensor measuring the temperature inside of the pen. An important business

goal is to alert the maintenance crew, when there is a pig inside of the pen and the temperature in
the pen is higher than a specified value. In this case, the maintainer responsible for this pen must

receive a notification about this situation via SMS on his mobile phone. More formally, in a very
simple readable way, the application logic for this simple scenario can be defined as follows:

BUSINESS RULE:

ON EVENT temperature-alert-in(pen)

ACTION send-SMS-to-person-responsible-for(pen)

CONTEXT RULES:

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 21 of 29 Submission date: 2012-02-29

ON EVENT pen-door-tag-triggered(pen)

RAISE EVENT pig-inside-the-pen(pen)

ON EVENT pig-inside-the-pen(pen) AND temperature-in(pen)> threshold

RAISE EVENT temperature-alert-in(pen)

In this simple example, there is one business rule handled by the business rules component and two
rules handled by the context manager. What is important to see is that the event raised by the

context manager temperature-alert-in(location) is used by the business rules component.

Thus, the term definition of the event must be shared by two separate ebbits component. Another

important thing is that the information on the location, where the situation happens, in this case the

concrete pen, must be attached to the events which are raised and pushed forward to the

architecture to be able to track this information by other rules. The next important aspect is that the
context information attached to the events, in this case the location, must be retrieved from

somewhere and attached to the events somehow.

In the next sections it will be explained, how the ontologies are used to access and retrieve the
knowledge about the application entities, how this information is attached to the events and used by

the rules.

8.2 The semantic knowledge model

Device ontology

First of all, it is necessary to know, what devices are used by the application and which events they

provide. This knowledge is represented by the device ontology. In our use case, we'll need to
represent three devices: the pen door RFID tag reader, the pen thermometer and the mobile phone

of the maintenance person. The door reader and the thermometers provide the events to the ebbits

Figure 10: The use-case device ontology

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 22 of 29 Submission date: 2012-02-29

architecture. The ebbits eventing system is based on a publisher-subscriber model, so each event is
publishing the values to the concrete channel, which must be also defined in the ontology. The

identifier of the event channel serves as the main mapping point between the data infrastructure of

the eventing system and the semantic model. When we know the publication channel of the event,
we can use this information to access any information related to it in the semantic model. The

device ontology for our use case is illustrated in Figure 10.

Event ontology

The semantic model describing the events contains the basic taxonomy and the representation of all
events used in the application. It also includes the definition of related event properties, such as

capabilities or payloads returned by the events. The event taxonomy is mostly used by the ebbits

eventing subsystem requiring the information necessary for filtering, aggregation or storing the
event data. The events defined in the model specify also the terms, such as application states, used

in the assumption and consequence parts of the rules. This is required to share the event terms in a
uniform way by all components. The detailed description of the event ontology and the semantic

support of eventing subsystem can be found in the upcoming Deliverable D7.3.2 “Technical

description of the implementation of Data and Event Management models 2”. The event model used
in our use case is illustrated in Figure 11.

Application (domain) ontology

The application ontology specifies the application specific domain model including all actors, context

entities, their mutual relations and their relations to the device and event models. The application
knowledge is mostly used by the rules and serves as the decision support information. In our use

case it is important to represent, where the devices are located, the maintenance crew responsibility

for locations and the ownership of the mobile phone device. The application ontology is illustrated in
Figure 12.

Figure 11: The use-case event ontology

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 23 of 29 Submission date: 2012-02-29

8.3 The common access to semantic knowledge

In order to simplify the whole metadata retrieval process, the ebbits application ontology manager
provides services enabling flexible access to semantic knowledge. Most of the scenarios require the

retrieval of properties related to a concrete entity, such as device, service, event or context entity.
The general signature of this service is specified as follows:

Ontology.getData(

 match: {property list},

retrieve: {property list});

The match parameter specifies the properties, which must be matched for the searched entity. The

retrieve parameter specifies the properties, which will be retrieved for entities satisfying the

match parameter. The role of the retrieve parameter is to specify only relevant properties to be

retrieved instead of the full model. This service aims to make the development of the rules easier.

The developer will use the graphical tool, which will help to compose the query, instead of learning
the whole SPARQL language. The property lists are specified as the path of the properties from the

entity to the concrete property value (see examples below). The composition of the service call may

be easily guided by the ontology using graphical tools, where the developer simply selects the
relevant properties to match and to retrieve directly in the model browser.

The usage of this service will be explained using a simple example: The ebbits device proxies above
the PWAL component listen to the publisher-subscriber channels, which are mapped to the concrete

events of the concrete devices. For example, the thermometer device publishes the event to the

channel 'pen-thermometer-topic'. The ontology model of this thermometer is defined as

follows:

thermometer-1

id 'thermometer-1,

 rdf:type Thermometer,

Figure 12: The use-case application ontology

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 24 of 29 Submission date: 2012-02-29

info

 manufacturer 'Thermometers, ltd.',

 device-model 'T X1',

hasEvent

 name 'getTemperature',

 capability temperature-measurement

 channel 'pen-thermometer-topic'

location pen-1

When the proxy receives the event from the concrete subscribed channel, it can retrieve all ontology

metadata mapped to the name of the channel. Then the event information can be extended with the
metadata, such as location, and the proxy may create the ebbits event, which is pushed forward to

the infrastructure.

The example of getting the required information on the entity directly can be e.g. retrieving the

location of the device having the event subscribed to the channel 'pen-thermometer-topic'.

The service call will look as follows:

Ontology.getData(

 match: {entity.hasEvent.channel: 'pen-thermometer-topic'},

retrieve: {entity.location});

This service call will be translated to the following SPARQL query and executed against the model:

SELECT ?entityLocation WHERE {

?entity hasEvent ?hasEvent.

?hasEvent channel 'pen-thermometer-topic'.

?entity location ?entityLocation. }

The service will retrieve the result:

 [{entity.location: 'pen-1'}]

If there would be more matching entities, the resulting list would have more elements.

In more complicated cases, the other mostly used scenario is to answer questions requiring a mutual
relation of two entities. For this case, a more complex ontology service is provided:

Ontology.getData(

 entity-match: {property list},

subentity-match: {property list},

 entity-retrieve: {property list},

subentity-retrieve: {property list});

For example, the developer wants to retrieve the identifier of mobile phone device, which is owned

by the maintenance crew person responsible for the location named 'pen-1'. The service call will

look as follows:

Ontology.getData(

 entity-match: {

 entity.type: MaintainanceCrew,

 entity.responsibleFor: 'pen-1',

 entity.owns: subentity },

 subentity-match: {subentity.type: MobilePhone},

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 25 of 29 Submission date: 2012-02-29

 entity-retrieve: {},

 subentity-retrieve: {subentity.id});

In this case, the most important fact is that the relation between the two entities is specified using

registered keywords entity and subentity. Also, one of the clauses entity-match or

subentity-match must contain the definition of inter-entity relation, e.g.

entity.isInRelationTo:subentity or vice versa. This call is translated to the SPARQL query:

SELECT ?subentityId WHERE {

 ?entity type MaintinanceCrew.

 ?entity responsibleFor 'pen-1'.

 ?entity owns ?subentity.

 ?subentity type MobilePhone.

 ?subentity id ?subentityId. }

It is assumed, that these two dedicated ontology manager services would cover most cases of
ontology queries. Anyway, for more complex queries, there is still the generic SPARQL endpoint

available:

Ontology.sparql(SPARQL query)

8.4 The ontology support for the rule-based systems

Meta-data retrieval and propagation

The assumption part of the rules mostly works with the definition of events, which trigger the rules.

The events within the ebbits architecture are defined as a list of key-value pairs specifying the

properties of the event. The event example including information about the event itself, the device,
which has generated the event, and the additional context information (e.g. location) can be

formalized as follows:

e = { device-id: 'thermometer-1',

 channel: 'pen-thermometer-topic',

location: pen-1,

capability: 'temperature-measurement' }

The rules may access or add any metadata of the events, to use them for the decision making or to
push them forward to the eventing infrastructure. How to use the common knowledge model in the

rule-based systems will be explained through the rules for the use-case scenario described in the

introduction section. Let’s start with the most simple context rule.

RULE 1: If the tag at the pen door was triggered, raise event that the pig is inside of the pen.

ON EVENT e[channel] = 'pen-door-tag-topic'

 RAISE EVENT {

 channel: 'pig-inside-the-pen-topic',

 location: e[location] }

As the events are extended with the relevant context information retrieved from the semantic model,

such as the location, the rules must be able to track this context information. In this case, the

location of the device using the addressing: e[location] is attached to the newly generated

event. This way, the context information added to devices or events can be automatically

propagated through the whole rule system.

RULE 2: If a pig is inside of the pen and the pen temperature is higher than 25 degrees, raise the

temperature alert for this pen.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 26 of 29 Submission date: 2012-02-29

This is a much more complicated example, where the rule system must check the temperature in a
certain location. To achieve this, it must be able to find the device having the event that is capable

of measuring the temperature and is located in required place. Then it must read the last actual

values measured by this device for this related event. Thus the rule must use the ontology to find
the device and then the component able to retrieve the measured values for the device event. The

rule can be specified as follows:

ON EVENT e[channel] = 'pig-inside-the-pen-topic'

 EVALUATE

 model = Ontology.getData(

 entity-match: {

 entity.location: e[location],

 entity.hasEvent: subentity },

 subentity-match: {

 subentity.capability: 'temperature-measurement' },

 entity-retrieve: {entity.id},

 subentity-retrieve: {subentity.channel});

 IF Data.getValue(

 model[entity-retrieve][entity.id],

 model[subentity-retrieve][subentity.channel],

) > 25 THEN

 RAISE EVENT {channel: 'temperature-alert-topic', location:

e[location]}

The device id and the channel of the relevant temperature measurement event are retrieved from
the ontology using the location and capability properties. This information is used to retrieve the last

measured values by reading the channel or by accessing the history data. The way of accessing
information can be dependent on the event type. This information can be also defined in the

ontology. Then the new 'temperature-alert' is generated with the attached location

information which was propagated from the lower level rules.

BUSINNESS RULE 1: If there is the temperature alert in some location, call the maintenance

responsible for this location.

In this case it is required to use the ontology to retrieve the identifier of the existing mobile phone

device owned by the maintenance crew member, who is responsible for concrete location. Then this
identifier is used to call the application service for sending the SMS.

ON EVENT e[channel] = 'temperature-alert-topic'

 EVALUATE

 model = Ontology.getData(

 entity-match: {

 entity.type: MaintainanceCrew,

 entity.responsibleFor: e[location],

 entity.owns: subentity },

 subentity-match: {

 subentity.type: MobilePhone

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 27 of 29 Submission date: 2012-02-29

 subentity.hasService.type: SMSService},

 entity-retrieve: {},

 subentity-retrieve: {subentity.id});

 IF isDefined(model[subentity-retrieve][subentity.id]) THEN

 ACTION Application.sendSMS({

 deviceId: model[subentity-retrieve][subentity.id],

 sms: 'Someting devilish happends at e[location]' });

8.5 Ontology support for rule composition

To establish and ensure the interoperability between the different ebbits components, the first step
is the definition of the commonly used vocabularies. These are formalized in the form of a semantic

model which is shared and accessed by all ebbits components in a uniform way. The terms used in

the assumption and consequence parts of the rules are employed following the ontology definitions.
To enable this, the semantic infrastructure provides graphical tools helping the model-guided

composition of the rules. When the developer creates a new rule, he or she will use the graphical
event browser which will provide a complete guide by listing the events and their definitions

following the developer’s needs. These event definitions are then used in the rules. The ontology

might also specify information, with which the concrete events must be extended in the

consequence part of the rule. For example, the definition of the temperature-alert event may

contain the requirement that this event must be extended with the location information, when it

is created. The same graphical tools will enable the ontology-guided creation of the properties,

which are required when using the Ontology.getData() service. This way, all terms are used in

a uniform way in the whole ebbits architecture.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 28 of 29 Submission date: 2012-02-29

9. Conclusions

Semantic interoperability for the ebbits project can be achieved by using a common terminology

throughout the whole project. Therefore, a design for using common vocabulary and instances for

all the components in the ebbits project is presented, which has to be extended in the future by
Work Package 4 with the help of the ebbits application partners. This is similar in spirit like the Entity

Name System of the OKKAM project, but without building up an additional infrastructure.

For the special case of web services, the OWL-S language is proposed.

For these remaining cases, where a matching algorithm has to be applied, the ebbits project does

not want to develop a completely new system, but instead apply the established results from the
literature of years of research. For the case of matching data in the RDF format, we mainly propose

the SILK system which is openly available under an Apache 2 license. It is declarative, supports
both, lexical and structural matching and assists in the evaluation of links through a web interface.

Depending on the obtained outcomes, especially regarding efficiency, further results from the LIMES
system can be considered. Furthermore, if it appears necessary that information from several

sources with different trust levels have to be integrated, the idMesh system could be applied.

ebbits D4.5 Analysis and design of semantic interoperability mechanisms

Document version: 1.0 Page 29 of 29 Submission date: 2012-02-29

10. References

Bouquet, P., Stoermer, H., Niederee, C., & Mana, A. (2008). Entity Name System: The

Backbone of an Open and Scalable Web of Data. Proceedings of the IEEE International

Conference on Semantic Computing, (S. 554-561).

Cudre-Mauroux, P., Haghani, P., Jost, M., Aberer, K., & de Meer, H. (2009). idMesh: Graph-

Based Disambiguation of Linked Data. Proceedings of the World Wide Web Conference,

(S. 591-600). Madrid.

de Bruijn, J. e. (2005). Web Service Modeling Ontology (WSMO). Von

http://www.w3.org/Submission/WSMO/ abgerufen

Elmagarmid, A., Ipeirotis, P., & Verykios, V. (2007). Duplicate Record Detection: A Survey.

IEEE Transactions on Knowledge and Data Engineering .

Farrell, J., & Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema. Von

http://www.w3.org/TR/sawsdl/ abgerufen

Gouvas, P., Bouras, T., & Mentzas, G. (2007). An OSGi-Based Semantic Service-Oriented

Device. In Proceedings of the 2007 OTM Confederated international conference on the

move to meaningful internet systems, (S. 773-782).

Health, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool.

Hreno, J., Nutakki, P., Knechtel, M., Furdik, K., & Sabol, T. (2011). Knowledge representation

formalism analysis. ebbits Project Deliverable D4.2, FP7 project 257852.

Jean-Mary, Y., Shironoshita, P., & Kabuka, M. (2009). Ontology matching with semantic

verification. Web Semantics: Science, Services and Agents on the World Wide Web,

235-251.

Köpcke, H., & Rahm, E. (2009). Frameworks for entity matching: A comparison. Data

Knowledge Engineering.

Li, J., Tang, J., Li, Y., & Luo, Q. (2009). RiMOM: A Dynamic Multistrategy Ontology Alignment

Framework. IEEE Transactions on Knowledge and Data Engineering, 1218-1232.

Martin, D. e. (2004). OWL-S: Semantic Markup for Web Services . Von

http://www.w3.org/Submission/OWL-S/ abgerufen

Martin, Y., & Ahlsén, M. (2011). State-of-the-Art design and implementation of systems with

persistent and high volume data. ebbits Project Deliverable D6.2, FP7 project 257852.

McIlraith, S., Cao Son, T., & Zeng, H. (2001). Semantic Web Services. IEEE Intelligent

Systems. Special Issue on the Semantic Web, 16(2):46-53.

Nagarajan, M., Verma, K., Sheth, A., Miller, J., & Lathem, J. (2006). Semantic Interoperability

of Web Services – Challenges and Experiences. In Proceedings of the IEEE International

Conference on Web Services ICWS '06, (S. 373-382).

Ngonda Ngomo, A.-C., & Sören, A. (2011). LIMES - A Time-Efficient Approach for Large-Scale

Link Discovery on the Web of Data. Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence, (S. 2312-2317).

Noessner, J., Niepert, M., Meilicke, C., & Stuckenschmidt, H. (2010). Leveraging

Terminological Structure for Object Reconciliation. Proceedings of the ISWC Workshop

2010, (S. 142-149).

Payam Barnaghi, S. D., Bauer, M., & Meissner, S. (2011). Service Modelling for the Internet of

Things. In Proceedings of Computer Science and Information Systems, (S. 949-955).

Veshcheva, Y. (2011). Object Matching für Linked Data. Master Thesis at Universität Leipzig

(In German).

Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Discovering and Maintaining Links on

the Web of Data. Proceedings of the International Semantic Web Conference, (S. 650-

665).

