
Document version: 2.0 Page 1 of 38 Submission date: 2011-02-28

Enabling the business-based

Internet of Things and Services

(FP7 257852)

D4.1 Analysis of Semantic Stores and Specific ebbits Use
Cases

Published by the ebbits Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 2 of 38 Submission date: 2011-02-28

Document control page

Document file: D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases.doc

Document version: 2.0

Document owner: Martin Knechtel (SAP)

Work package: WP4 – Semantic Knowledge Infrastructure

Task: T4.1 Enhancement of Semantic Stores

Deliverable type: R

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Martin Knechtel (SAP) 2011-01-12 Outline and work distribution

0.11 Jan Hreno (TUK) 2011-01-21 Reasoning chapter outline

 Ferry Pramudianto (FIT) 2011-01-27 Section on relation to ebbits Deliverable

D5.1.1, Section 5 “Multi-sensor Data

Fusion” added to sections 3.4.1 and 4.3

0.12 Matts Ahlsén (CNet) 2011-01-31 Section 3.4 outline

0.13 Martin Knechtel (SAP) 2011-02-08 Sections 3.2, 4.1 on Scalability and

queries

0.14 Jan Hreno (TUK) 2011-02-11 Sections 3.3 and 4.2 about reasoning

0.15 Matts Ahlsén (CNet) 2011-02-11 Section 3.4 about Distribution and

Centralization

0.16 Martin Knechtel (SAP) 2011-02-11 Conclusions and Executive Summary

0.17 Karol Furdik (IS) 2011-02-11 Contribution to Sections 3.3 and 4.2

about reasoning

1.0 All contributors 2011-02-11 Version for internal review

 Reviewers 2011-02-18 Internal reviews back

2.0 All contributors 2011-02-25 Revisions with respect to reviewer

comments
 2011-02-28 Final version submitted to the European

Commission

Internal review history:

Reviewed by Date Summary of comments

Roberto Checcozzo (COMAU) 2011-02-15 Approved. I added some information on

what the semantic store in 2.1.

The document is really interesting and I

think it is a good job!

Michael Jacobsen (TNM) 2011-02-15 Approved. Various minor corrections.

Requests for clearification at places.

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 3 of 38 Submission date: 2011-02-28

Index:

1. Executive summary ... 4

2. Introduction .. 5

2.1 Purpose, context and scope of this deliverable .. 5
2.2 Background .. 5

3. State of the art of semantic stores .. 6

3.1 Semantic stores .. 6
3.2 Scalability and queries ... 6

3.2.1 Results from the Berlin SPARQL Benchmark (BSBM) 7
3.2.2 Results from the JustBench Benchmark ... 10

3.3 Reasoning ... 12
3.3.1 Survey .. 13
3.3.2 AllegroGraph 4.2 .. 14
3.3.3 OWLIM ... 19

3.4 Distribution and centralization ... 23
3.4.1 Distribution and centralization aspects at multi-sensor data fusion 26

4. Ebbits use cases analysis .. 30

4.1 Scalability and queries .. 30
4.2 Reasoning ... 31
4.3 Distribution and centralization ... 34

5. Conclusions ... 36

6. References .. 37

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 4 of 38 Submission date: 2011-02-28

1. Executive summary

This Deliverable forms the starting point for Task 4.1 of the ebbits project. It presents the

state of the art of semantic stores and brings it into relation to the ebbits use cases in order to

identify the gap to be filled during the ebbits project in Work Package 4 “Semantic Knowledge

Infrastructure”. In this work package will be considered the following issues related to the

available database systems:

 Scalability

 Query complexity

 Distribution

 Architecture

The present document presents the state of the art of semantic stores, providing information

related to the aspects of scalability of RDF stores and query performance, through the analysis

of experimental data, describing the most promising triple store products that could be used in

the ebbits project, and considering the possible centralized and distributed strategies in the

development of the storage system.

These three aspects are picked up in Section 4 again when they are brought into relation to

the ebbits use cases and requirements.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 5 of 38 Submission date: 2011-02-28

2. Introduction

2.1 Purpose, context and scope of this deliverable

This Deliverable is a result of Task 4.1 “Enhancement of Semantic Stores” and presents the

state of the art of semantic stores and brings it into relation to the ebbits use cases in order to

identify the gap to be filled during the ebbits project in Work Package 4 “Semantic Knowledge

Infrastructure”.

Since Task 4.1 is performed during the complete project time of 4 years, and this Deliverable

is due after the first 6 months, it can only be considered as a starting point that helps

identifying what can be done in order to advance the state of the art of semantic stores to turn

the ebbits vision into reality.

2.2 Background

This Deliverable forms the starting point for Task 4.1 of the ebbits project. The goal of Task

4.1 is the following (citation from the ebbits Description of Work).

The aim of this task is to perform investigation and enhancement of high performance

semantic stores using distributed / hierarchical access and manipulation methods. Semantic

store provides a basic persistency level for semantic information systems. These systems are

not new, and a wide range of supportive tools is available. Some stores available today are

Sesame, Jena (which can be used as RDF-store, although it is not a classic RDF-store, RDF-

Match (Oracles integration of RDF data, which also makes combined queries with relational

data possible), Yars2, 3store, RDF-3X (quite new and it is fast, since it creates indices of all

possible permutations), and Hexastore (the approach is similar to RDF-3X). However, there

are many open issues to be investigated in order to develop improved semantic stores.

The following points, which are weak points in available systems, will be addressed:

• Scalability: Most systems have been tested with large scale, but not with very large

scale, datasets. It is unclear how they will scale with very large datasets. The task will

perform analyses with real data in order to provide a qualified state-of-the-art analysis.

• To allow more complex query constructs: The stores usually have problems with

multiple RDF triple patterns. The presence of multiple join constructs makes the

processing slower. Applicable, new optimizations will be pursued and tested.

• Query types: The stores are efficient in queries with subjects. In the ebbits, a similar

performance must be achieved with objects and properties in queries.

• Reasoning: Often reasoning capabilities of the RDF stores are rather lightweight. It is

necessary to allow for more reasoning power while keeping the scalability performance.

• Distribution/Centralization: It is unclear how to collect data from the Web to a central

repository for processing and efficient querying. Similar to common search engine

technology, a semantic index will be designed, which stores knowledge representations

found in the Web at a central place. Also search engines have the problem of keeping

their index current. In the case of semantic stores, the knowledge base has to be kept

current. In scenarios where the Web data often changes, strategies are needed to pull

the data adaptively in order to process the freshest possible data.

The work on scalability and queries will be performed by SAP. TUK and IS will support with

reasoning and CNET and FIT will support distribution and centralization.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 6 of 38 Submission date: 2011-02-28

3. State of the art of semantic stores

3.1 Semantic stores

Classical database management system (DBMS), provide logical data structure that cannot totally satisfy the

requirements for a conceptual definition of data, because it is limited in scope and is strongly oriented
toward the DBMS software implementation. Therefore, the need to define data from a conceptual view has

led to the development of semantic data modeling techniques. That is, techniques to define the meaning of

data within the context of its interrelationships with other data.

A semantic data model is an abstraction which defines how the stored symbols relate to the real world.

Thus, the model must be a true representation of the real world, enhancing the meaning of the data. In the
ebbits project, semantic stores provide a significant help in the simplification of the database system usage

and the matching of the database with the real world.

In this work has been considered the SPARQL language. SPARQL (pronounced "sparkle") is an RDF query
language; its name is a recursive acronym that stands for SPARQL Protocol and RDF Query Language. It was

standardized by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is
considered a key semantic web technology. On 15 January 2008, SPARQL became an official W3C

recommendation, implementations for multiple programming languages exist.

SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional patterns.

3.2 Scalability and queries

This section describes the scalability of RDF (Resource Description Framework) stores for large

datasets and the performance of SPARQL queries.

Specifics of SPARQL queries have been investigated in the PhD thesis (Schmidt 2010). The

thesis includes

 a complete complexity analysis for all operator fragments of the SPARQL query

language, which identifies operator constellations that make query evaluation hard and

- as a central result - shows that the SPARQL OPTIONAL operator alone, which allows

for the optional selection of components in RDF graphs, is responsible for the PSpace-

completeness of the SPARQL evaluation problem;

 a language-specific benchmark suite for SPARQL, called SP2Bench, which allows to

assess the performance of SPARQL implementations in a comprehensive, application-

independent setting.

The benchmark SP2Bench is not developed around a selected use case but instead highly

SPARQL-specific. It covers a variety of challenges that engines may face when processing

RDF(S) data with SPARQL. The data generator is complemented by a set of 17 benchmark

queries, specifically designed to test characteristic SPARQL operator constellations and RDF

access patterns over the generated documents. The thesis (Schmidt 2010) allows insights for

SPARQL endpoint implementers on the complexity of SPARQL evaluation and provides an

algebraic SPARQL query optimization. Once the implementation is ready, with SP2Bench it also

provides a benchmark to assess the query optimizations. A selected set of available RDF stores

has been tested with the SP2Bench benchmark, e.g., in (Schmidt 2009). Those experimental

results witnessed that SPARQL implementations like ARQ, Sesame, or Virtuoso suffered from

severe performance bottlenecks when dealing with medium- and large-scale RDF databases,

even for presumably simple queries that can be processed efficiently in a comparable relational

setting.

The W3C publishes a collection of RDF store benchmarks at (W3C 2010). The collection

consists of academic publications, test sets, benchmarks and benchmarking results. The

benchmarks contain the

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 7 of 38 Submission date: 2011-02-28

 Berlin SPARQL Benchmark (BSBM), which provides a comparison of the performance of

RDF and Named Graph stores as well as RDF-mapped relational databases and other

systems that expose SPARQL endpoints,

 Lehigh University Benchmark (LUBM), which evaluates the performance of repositories

with respect to extensional queries over a large data set,

 Ontology Benchmark (UOBM) extends the LUBM benchmark in terms of inference and

scalability testing,

 JustBench, which analyses the performance of OWL reasoners based on justifications

for entailments.

Since the results from LUBM in (Guo et al. 2005) and UOBM in (Ma et al. 2006) can be

considered quite old at the time of this Deliverable, we focus on the results of BSBM and

JustBench in further detail.

3.2.1 Results from the Berlin SPARQL Benchmark (BSBM)

The results from the BSBM are published in (Bizer and Schultz 2009). The benchmark is

introduced as a “benchmark for comparing the performance of storage systems that expose

SPARQL endpoints. Such systems include native RDF stores, Named Graph stores, systems

that map relational databases into RDF, and SPARQL wrappers around other kinds of data

sources” (Bizer and Schultz 2009).

The test data is “built around an e-commerce use case, where a set of products is offered by

different vendors and consumers have posted reviews about products.” The datasets consist of

1,000,000 to 100,000,000 triples and can be downloaded at (Bizer and Schultz 2009). The

datasets already contain all inferences, so that the systems under test did not have to do any

inferencing.

Results from the BSBM are available for

 four RDF stores (Virtuoso Version 5.0.10, Sesame Version 2.2.4, Jena TDB Version

0.72, Jena SDB Version 1.2.0) and

 two relational database-to-RDF wrappers (D2R Server Version 0.6 and Virtuoso - RDF

Views Version 5.0.10).

 two SQL versions of the benchmark in order to bring the SPARQL results into context to

relational database management systems (MySQL 5.1.26 and Virtuoso - RDBMS Version

5.0.10)

The benchmarks have been run on a Linux PC with Intel Core 2 Quad Q9450 2.66GHz, 8GB

RAM, 160GB HDD with 10,000 rpm and 750GB HDD with 7,200 rpm. The exact hardware

configuration and test procedure is given at (Bizer and Schultz 2009).

The test driver and the system under test (SUT) were running on the same machine in order to

reduce the influence of network latency. The test driver issues the commands to load the

datasets and to query the datasets.

Table 1 provides the results about the load times required by the SUTs.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 8 of 38 Submission date: 2011-02-28

Table 1: Load times for SUTs and the different datasets in [day:]hh:min:sec (Bizer and Schultz 2009)

SUT 1M 25M 100M

Sesame 00:02:59 12:17:05 3:06:27:35

Jena TDB 00:00:49 00:16:53 01:34:14

Jena SDB 00:02:09 04:04:38 1:14:53:08

Virtuoso TS 00:00:23 00:39:24 07:56:47

Virtuoso RV 00:00:34 00:17:15 01:03:53

D2R Server 00:00:06 00:02:03 00:11:45

MySQL 00:00:06 00:02:03 00:11:45

Virtuoso SQL 00:00:34 00:17:15 01:03:53

The query performance of the SUTs has been measured with different mixes of queries,

containing altogether 12,500 queries. The queries were issued against the system with the

SPARQL protocol (with the SQL protocol for the RDBMS comparison). The results in Table 2

compare the SPARQL query performance of the different stores and put them into relation to

the SQL query performance of MySQL and Virtuoso's SQL engine. The SQL performance figures

also allow calculating the overhead that is produced by the relational database to RDF

wrappers when rewriting SPARQL queries into SQL queries against the underlying RDBMS. The

two SQL systems are no "SQL backed semantic stores" but pure SQL systems. The SPARQL

queries have been manually rewritten to SQL queries. The measured performance is very

good, but as explained, both are no semantic store. For this reason the measured performance

cannot be taken into account when pointing out the fastest semantic store. (Bizer and Schultz

2009).

Table 2: Query mixes per hour. Best performance in dataset (excluding SQL engines) is bold (Bizer and Schultz 2009)

 Sesame
Native

Jena
TDB

Jena
SDB

Virtuoso
TS

Virtuoso
RV

D2R
Server

MySQL
SQL

Virtuoso
SQL

1 M 18,094 4,450 10,421 12,360 17,424 2,828 235,066 192,013

25 M 1,343 353 968 4,123 12,972 140 18,578 69,585

100 M 254 81 211 954 4,407 35 4,991 9,102

The following Tables provide results about performance in answering queries from a single

client. Each of them contains one line per query type. The details about the used query types

can be found in (Bizer and Schultz 2009). Table 3 presents the results with a 1M triple dataset,

Table 4 with a 25M triple dataset and Table 5 with a 100M triple dataset. While for smaller

datasets Sesame outperforms the other stores in almost all cases, for bigger datasets

especially Virtuoso RV shows a more performant behavior.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 9 of 38 Submission date: 2011-02-28

Table 3: Queries per second. 1M triple dataset. Best performance in dataset (excluding SQL engines) is bold (Bizer and

Schultz 2009)

Sesame
Native

Jena
TDB

Jena
SDB

Virtuoso
TS

Virtuoso
RV

D2R
Server

MySQL
SQL

Virtuoso
SQL

Query 1 662 494 374 202 199 328 3,021 1,195

Query 2 251 61 50 47 78 41 4,525 1,592

Query 3 505 451 283 176 182 226 2,833 1,079

Query 4 452 429 240 92 106 224 2,653 1,098

Query 5 30 2 18 76 118 1 396 411

Query 6 14 60 17 55 275 26 164 1,605

Query 7 87 189 112 72 81 123 1,912 831

Query 8 297 159 134 116 132 72 3,497 1,715

Query 9 924 57 129 541 506 81 4,255 2,639

Query 10 429 429 289 95 224 218 4,444 2,004

Query 11 652 376 351 361 102 33 9,174 2,494

Query 12 797 53 119 133 151 203 7,246 2,801

Table 4: Queries per second. 25M triple dataset. Best performance in dataset (excluding SQL engines) is bold (Bizer
and Schultz 2009)

Sesame
Native

Jena
TDB

Jena
SDB

Virtuoso
TS

Virtuoso
RV

D2R
Server

MySQL
SQL

Virtuoso
SQL

Query 1 200 165 198 192 173 236 955 833

Query 2 168 51 47 46 75 36 3,333 1,456

Query 3 140 141 151 165 167 115 919 838

Query 4 128 116 132 86 96 167 919 759

Query 5 2 0.1 1 14 30 0.04 25 43

Query 6 1 2 1 2 25 1 7 97

Query 7 57 28 27 36 76 97 1,370 733

Query 8 90 27 30 113 129 62 601 1,603

Query 9 128 3 9 533 482 73 2,849 2,639

Query 10 93 62 40 75 220 200 3,356 1,587

Query 11 98 45 97 342 100 2 4,367 3,195

Query 12 350 3 9 129 148 162 2,571 2,985

Table 5: Queries per second. 100M triple dataset. Best performance in dataset (excluding SQL engines) is bold (Bizer

and Schultz 2009)

Sesame
Native

Jena
TDB

Jena
SDB

Virtuoso
TS

Virtuoso
RV

D2R
Server

MySQL
SQL

Virtuoso
SQL

Query 1 15 35 12 132 122 79 476 470

Query 2 32 38 35 39 64 40 3,268 991

Query 3 13 28 8 136 129 56 459 456

Query 4 10 25 7 54 84 72 428 443

Query 5 0.5 0.04 0.5 5.9 13.6 0.01 7.9 12.2

Query 6 0.1 0.1 0.1 0.5 6 0.2 1.9 21.7

Query 7 2 6 2 5 15 12 407 26

Query 8 4 8 3 12 22 12 63 31

Query 9 19 1 2 53 164 33 1,370 145

Query 10 2 19 2 8 67 77 1,883 267

Query 11 13 24 23 44 41 0 456 1,248

Query 12 18 1 2 39 91 170 539 1,524

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 10 of 38 Submission date: 2011-02-28

The following Tables provide results about performance in answering queries from multiple

clients. In real world scenarios there are usually more than one clients working against a

SPARQL endpoint. For this reason the following results are more relevant than the ones above

for one client. Table 6 and Table 7 provide the results. The number of query mixes per hour

has been extrapolated from the time it took all clients together to execute 500 query mixes.

For the detailed test procedure we refer the reader to (Bizer and Schultz 2009). Again,

Virtuoso shows the best performance, followed by Sesame. As explained above, the two pure

SQL systems are not taken into account for this comparison since they are no semantic store.

Table 6: Query mixes per hour. 1M triple dataset. Best performance in a fixed number of client (excluding SQL

engines) is bold (Bizer and Schultz 2009)

Dataset
Size 1M

Number of clients

 1 2 4 8 64

Sesame 18,094 19,057 16,460 18,295 16,517

Jena TDB 4,450 6,752 9,429 8,453 8,664

Jena SDB 10,421 17,280 23,433 24,959 23,478

Virtuoso
TS 12,360 21,356 32,513 29,448 29,483

Virtuoso
RV 17,424 28,985 34,836 32,668 33,339

D2R
Server 2,828 3,861 3,140 2,960 2,938

MySQL 235,066 318,071 472,502 442,282 454,563

Virtuoso
SQL 192,013 199,205 274,796 357,316 306,172

Table 7: Query mixes per hour. 25M triple dataset. Best performance in a fixed number of client (excluding SQL

engines) is bold (Bizer and Schultz 2009)

Dataset
Size 25M

Number of clients

 1 2 4 8 64

Sesame 1,343 1,485 1,204 1,300 1,271

Jena TDB 353 513 694 536 555

Jena SDB 968 1,346 1,021 883 927

Virtuoso TS 4,123 7,610 9,491 5,901 5,400

Virtuoso RV 12,972 22,552 30,387 28,261 28,748

D2R Server 140 187 160 146 143

MySQL 18,578 31,093 39,647 40,599 40,470

Virtuoso
SQL 69,585 85,146 135,097 173,665 148,813

3.2.2 Results from the JustBench Benchmark

Since OWL reasoners can be connected to state of the art RDF stores to make implicit

knowledge explicit, we review an approach for benchmarking OWL reasoners. The performance

analysis of OWL reasoners on expressive OWL ontologies is an ongoing challenge. In contrast

to other reasoning benchmarks, JustBench does not measure the time for a full computation of

all consequences but it allows for a more fine granular assessment. The assessment can be

done per consequence. This helps to identify the type of consequences which causes

performance problems to a given reasoner.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 11 of 38 Submission date: 2011-02-28

The JustBench setting and results have been published in (Bail, Parsia and Sattler 2010).

The test system is a Mac Pro desktop system (2.66 GHz Dual-Core Intel Xeon processor, 16 GB

physical RAM) with 2GB of memory allocated to the Java virtual machine. The three reasoners

FaCT++ 1.4.0, HermiT 1.2.3, and Pellet 2.0.1 have been tested. The set of test ontologies

consists of Building, Chemical, Not-Galen (a modified version of the Galen ontology), DOLCE

Lite, Wine and MiniTambis1

As a preparation step, for each consequence of every ontology, the set of justifications has

been extracted. A justification is a minimal set of axioms that entails a consequence. The

number of justifications for each entailment ranged from 1 to over 300, with the largest

containing 36 axioms.

In the test series, the time was measured that a reasoner needed in order to decide whether a

consequence follows from a justification. The reasoner has to decide with “yes” if it works

correctly. This was not always the case and details on the observed incorrectness of Pellet are

given in the paper. It should be noted, that only consequences which should have been but

haven‟t been computed can be detected but not the inverse. It is not possible to detect non-

entailments. Thus, the test is not analytically complete, but the authors claim that it still scores

high on understandability. The incorrectness has been submitted to the developers and might

have been corrected meanwhile.

The interesting parameter in the context of this Deliverable is the time required. The time

required is given in Figure 1 for the MiniTambis ontology and in Figure 2 jointly for all

ontologies. Especially the performance of the reasoner Pellet decreases with higher justification

sizes. FaCT++ is the fastest of all 3 reasoners.

Figure 1: Performance of reasoners with the MiniTambis ontology depending on the size of justifications (Bail, Parsia

and Sattler 2010)

1
 The ontologies can be found online at http://owl.cs.man.ac.uk/explanation/justbenchmarks

http://owl.cs.man.ac.uk/explanation/justbenchmarks

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 12 of 38 Submission date: 2011-02-28

Figure 2: Performance of reasoners depending on the size of justifications (Bail, Parsia and Sattler 2010)

A second experiment involves an artificially generated ontology. The results are given in Figure

3. It turns out that entailments of this ontology have significantly more justifications. While

HermiT takes comparably long for loading the ontology, it is comparably fast for checking if a

justification entails a consequence.

Figure 3: Reasoner performance on an artificially generated ontology (Bail, Parsia and Sattler 2010)

3.3 Reasoning

The reasoning can be defined as an ability to infer a qualitatively new information from a set of

asserted facts or axioms stored in a semantic repository. It means that the reasoning goes

behind a simple retrieval or querying of ontologies to obtain the explicitly stored facts, i.e. to

find all the triplets that contain particular object, predicate, etc. The task of reasoning is

somehow broader; it is focused on a retrieval of facts that are implicit in the ontology and can

be derived by means of a combination of explicitly stated facts (Davies et al. 2006), (Serrano

et al. 2007).

The process of reasoning is based on an identification of logical consequences that can be

extracted from the semantically enriched data. Particular solutions depend on a representation

of underlying semantic structures that determine the implementation of reasoners. The

reasoning mechanisms typically employ the first-order predicate logic or other type of

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 13 of 38 Submission date: 2011-02-28

description logic, where rules are applied for forward and backward chaining (Baader and Nutt

2002). Another group of reasoners, which can be seen as an alternative to the rule-based

systems, is built on statistical or probabilistic approaches (Pearl 1997).

Assuming that ontologies can be seen as simplified models of human memory, which are

capable to store and represent knowledge of a given domain, the reasoning applied on such a

formal semantic structure can be related to the human consciousness. Namely, the induction

and deduction are two basic types of logical inference, which correspond to the forward and

backward chaining procedures, respectively. The relations of generalisation (e.g. is_a, part_of,

has, etc.) are utilised for extracting a general goal from atomic facts given on an input

(forward chaining, inductive inference) or for determining atomic facts that may satisfy an

input general goal (backward chaining, deductive inference). Besides the extraction of logically

inferred information, reasoners are employed for ontology merging and solving inconsistency

problems between possibly heterogeneous networked ontologies (Davies et al. 2006).

The expressiveness and performance of reasoners depends on particular description logic

variant and the respective algorithm implemented in the reasoning engine of a semantic store.

Language variants refer to RDFS fragments of description logic or OWL sub-languages such as

OWL Lite / DL / Full or OWL 2 profiles as EL / QL / RL (Baader 2009). Benchmarks of existing

reasoners vary in evaluation methods; however, the criteria of query selectivity, complexity,

subsumption, response and elapsed time are typically included (Lee et al. 2008), (Bock et al.

2008). There exists a relatively wide range of available reasoners, some of the most commonly

used are referenced by the W3C OWL working group (W3C Implementations 2010). However,

for the purposes of ebbits, we will focus the survey and analysis of suitable reasoners to the

solutions that integrate reasoning engines of high performance into a comprehensive semantic

repository platform.

3.3.1 Survey

As we consider working with a huge amount of sensor data in the ebbits cases, which has to be

potentially stored, accessed and reasoned about in a triple store, we have identified some of

already available triple stores that can fulfil these expectations. We will analyse, how these

selected triple stores deal with a huge amount of data, and how these products can be used in

the heterogeneous distributed environment of the ebbits use cases. We will focus on analysis

of these properties of the products:

 Formalisms supported

 API implementation

o We will focus here on Java, as a technology of choice for the ontology manager

of ebbits.

 Reasoner engine implementation

 Federation support

 Datatype support

 Full text search support

 Native extensions

Some of the most known triple stores (shortly described in a technology watch report D2.2.1)

were surveyed:

 BigOWLIM, SwiftOWLIM2

 Bigdata3

 AllegroGraph4

 OntoBroker5

 Sesame6

2
 http://www.ontotext.com/owlim/

3
 http://www.bigdata.com/bigdata/blog/

4
 http://www.franz.com/agraph/allegrograph/

5
 http://www.ontoprise.de/en/home/products/ontobroker/

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 14 of 38 Submission date: 2011-02-28

 Jena7

According to the survey, we can divide triple stores into 2 basic groups. Triple stores using

relational databases for storing data and triple stores using their own (native) storage

mechanisms. We have selected one representative from both groups to further investigate

their capabilities. Two of best performing and most scalable solutions were selected (based on

publicly available benchmarks). The selected triple stores are BigOWLIM (capable of efficiently

working with up to 20B triples, LUBM 8000 load rate 20,6K/sec with OWL-Horst inference

activated) and AllegroGraph (20+B triples, LUBM 8000 load rate 303K/sec with 6 indices

activated).

3.3.2 AllegroGraph 4.2

Overview

AllegroGraph8 is a database and application framework for building Semantic Web applications.

Figure 4: The AllegroGraph Architecture (Source: http://www.franz.com)

It can store data and meta-data as triples; query these triples through various query APIs like

SPARQL and Prolog; and apply RDFS++ reasoning with its built-in reasoner. AllegroGraph

includes support for Federation, Social Network Analysis, Geospatial capabilities and Temporal

reasoning. The basic architecture of the AllegroGraph framework is given in Figure 4.

Licence

AllegroGraph RDF Store is available in three editions:

 Free for < 50 Million Triples

 Developer for < 600 Million Triples

 Enterprise for Unlimited Triples

System Requirements

The AllegroGraph version 4 Server runs natively on Linux x86-64 bit. To run AllegroGraph

version 4 on other operating systems (i.e. Windows, Mac) Virtual Machine images are

provided. Clients to an AllegroGraph server may be either 32-bit or 64-bit.

The developers promised, that native implementations for Apple Mac OSX (x86-64) 10.6 and

64-bit Microsoft Windows 2000/XP/Vista/7/Server 2003 are coming soon.

6
 http://www.openrdf.org/

7
 http://jena.sourceforge.net/

8
 http://www.franz.com/agraph/allegrograph/

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 15 of 38 Submission date: 2011-02-28

For native 64-bit Mac, Windows, and Solaris, and all 32-bit systems, one can also use

AllegroGraph 3.3 version.

Implementation

The AllegroGraph triple-store is composed of assertions. Though called triples, each assertion

has five fields:

 subject (s)

 predicate (p)

 object (o)

 graph (g)

 triple-id (i)

All of s, p, o, and g are strings of arbitrary size. To speed queries, AllegroGraph creates indices

which contain the assertions plus additional information. AllegroGraph can also perform

freetext searching in the assertions using its freetext indices. Finally, AllegroGraph keeps track

of deleted triples. Advantages over Relational Database Management Systems (RDBMSs) are

as follows:

 New predicates can be added without changing any schema

 One-to-many relations are directly encoded without the indirection of tables

 Everything is automatically indexed

AllegroGraph implements the ACID properties of transaction processing (atomicity,

consistency, isolation, and durability) similar to other database products.

The atomicity property defines that all updates within one transaction are persisted together. A

transaction either completely fails or completely succeeds. The consistency property defines

that every transaction takes the database as a whole from one consistent state to another. The

database itself will never be inconsistent, according to its own consistency rules. AllegroGraph

does not allow for user-defined consistency rules (like, say, foreign key constraints in a

relational database). It is up to the user to make sure that transactions create and maintain a

consistent application-level state. The isolation property defines that every transaction only

sees data of other completed transactions, and not partial results of transactions running

concurrently. As AllegroGraph performs no triple locking, it is possible that a triple that is being

read in a transaction could be deleted in a concurrent transaction. Developers need to be

aware of this and similar possibilities and make sure that transactions are properly sequenced

if such concurrent updates could have an impact on application-level consistency. The

durability property defines that once the database system signals the successful completion of

a transaction to the application, the changes made by the transaction will persist even in the

presence of hardware and software failures.

Adding triples

AllegroGraph supports N-Triples, RDF/XML, Turtle files for import. Parsers for N3 and other

common file formats are planned for the future. One can also load triples into AllegroGraph

programmatically. This can be used to import custom data formats, or to build a triple-store

incrementally. Triples can be added using RDF syntax or AllegroGraph's special encoded data-

types.

Federation

AllegroGraph uses that same programming API to connect to local triple-stores (either on-disk

or in-memory), remote-triple-stores and federated triple-stores. A federated store collects

multiple triple-stores of any kind into a single virtual store that can be manipulated as if it

were a simple local-store. Federation provides three big benefits:

 scalability

o use separate instances of AllegroGraph to load data on multiple CPUs

 manageability

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 16 of 38 Submission date: 2011-02-28

o keeping known facts, inferred triples, provenance information, ontologies,

metadata and deleted triples in separate, easily manageable stores and combine

and re-combine the data as necessary

 easy archiving

o federation allows segmenting of data into usable chunks that can be swapped in

and out as needed

Querying

AllegroGraph gives several options for extracting data from RDF graphs. Most basic is the API

itself, working with individual triples. A logic view is offered by Prolog. SPARQL more closely

resembles SQL, and offers a relational, pattern-based approach to retrieving data from a store.

AllegroGraph's SPARQL implementation is called twinql

Conceptually, twinql has three layers:

 a parser from the textual SPARQL surface;

 a query builder and planner that prepares the query for execution;

 and an executor that runs the plan against a store to produce results.

Currently, input and output from each of these layers is limited (for example, the query plan is

not available to user code, but parsed output is). This will change in a future release.

There are three possible outputs from a SPARQL query:

 a yes/no answer, in response to an ASK query;

 a list of bindings, in response to a SELECT query; or

 a new RDF graph, in response to a CONSTRUCT or DESCRIBE query.

AllegroGraph Triple Indices

AllegroGraph uses a set of sorted indices to quickly identify a contiguous block of triples that

are likely to match a specific query pattern. These indices are identified by names that

describe their organization. The default set of indices are called spogi, posgi, ospgi, gspoi,

gposi, gospi, and i, where:

 s stands for the subject URI.

 p stands for the predicate URI.

 o stands for the object URI or literal.

 g stands for the graph URI.

 i stands for the triple identifier (its unique id number within the triple store).

Reasoning

AllegroGraph's RDFS++ reasoning supports all the RDFS predicates and some of OWL's. It is

not complete but it has predictable and fast performance. Here are the supported predicates:

 rdf:type and rdfs:subClassOf

 rdfs:range and rdfs:domain

 rdfs:subPropertyOf

 owl:sameAs

 owl:inverseOf

 owl:TransitiveProperty

In addition to RDFS++ reasoning, AllegroGraph also supports reasoning over hasValue

restrictions in equivalent classes or subclasses.

 owl:hasValue

 owl:someValuesFrom

 owl:allValuesFrom

Prolog

Prolog is an alternative query mechanism for AllegroGraph. With Prolog, one can specify

queries declaratively.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 17 of 38 Submission date: 2011-02-28

Datatypes and extensions

AllegroGraph supports several datatypes for efficient storage, manipulation, and search of

strings, numbers, dates, Social Network data, Geospatial and Temporal information.

Basic data-types

AllegroGraph stores a wide range of data types directly in its low level triple representation.

This allows for very efficient range queries and significant reduction in triple-store data size.

With other triple-stores that only store strings, the only way to do a range query is to go

through all the values for a particular predicate. This works well if everything fits in memory;

but if the predicate works with millions of triples, it will need costly machines with huge

amounts of RAM. AllegroGraph supports most XML Schema types (native numeric types, dates,

times, longitudes, latitudes, durations and telephone numbers).

Social Network Analysis

By viewing interactions as connections in a graph, we can treat a multitude of different

situations using the tools of Social Network Analysis (SNA). SNA lets us answer questions like:

 How closely connected are any two individuals?

 What are the core groups or clusters within the data?

 How important is this person (or company) to the flow of information

 How likely is it that this person and that person know one another

AllegroGraph's SNA toolkit includes an array of search methods, tools for measuring centrality

and importance, and the building blocks for creating more specialized measures.

Geospatial Primitives

AllegroGraph provides a novel mechanism for efficient storage and retrieval of geospatial data.

3 Support is provided both for Cartesian coordinate systems (i.e., a flat plane) and for

spherical coordinate systems (e.g., the surface of the earth or the celestial sphere).

AllegroGraph's geospatial application also has support for defining polygons and quickly

determining position according these polygons.

Temporal Primitives

AllegroGraph supports efficient storage and retrieval of temporal data including datetimes,

time points, and time intervals:

 datetimes in ISO8601 format: "2008-02-01T00:00:00-08:00"

 time points: ex:point1, ex:h-hour, ex:when-the-meeting-began, etc

 time intervals: ex:delay-interval (say, from point ex:point1 to ex:h-hour)

Once data has been encoded, applications can perform queries involving a broad range of

temporal constraints on data, including relations between :

 points and datetimes

 intervals and datetimes

 two points

 two intervals

 points and intervals

Freetext Indexing

AllegroGraph can build freetext indexes of the strings of the objects associated with a set of

predicates that one specify. Given a freetext index, one can search for text using:

 boolean expressions ("market" AND "housing")

 wild cards ("science*" OR "math*")

 phrases ("Semantic Web search")

Freetext indexing slows the rate at which one can insert triples between 5 and 25% depending

on the number of predicates involved and the kinds of string data in the application.

AllegroGraph supports multiple free-text indices, each targeted on specific fields of specific

predicates. These text indices are based on a locality-optimized Radix tree for intelligent

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 18 of 38 Submission date: 2011-02-28

traversal for fast wildcard and fuzzy searches. The indexing process is fully transactional, and

is able to easily handle billions of documents.

Programming with AllegroGraph

AllegroGraph comes in multiple flavors and works with multiple programming languages and

environments.

Java

The Java client interface implements most of the Sesame and Jena interfaces for accessing

remote RDF repositories. Because AllegroGraph provides functionality not found in other triple-

stores, extensions were implemented where applicable. The Java API supports the following

operations:

 Creating a Repository and Triple Indices

 Asserting and Retracting Triples

 Statement Matching for simple retrieval

 Work with Literal Values (Numeric, String, Boolean, Date, Time, Datetime)

 Importing Triples (RDF/XML, NTriples)

 Exporting Triples (RDF/XML, NTriples)

 Searching Multiple Graphs

 Namespaces

 Free Text Search

 Execute SPARQL Query

o Select, Ask, Describe, and Construct Queries

o Parametric Queries

o Range Matches

 Federated Repositories

o AllegroGraph lets one split up triples among repositories on multiple servers and

then search them all in parallel. From the point of view of a Java code, it looks

like one is working with a single repository.

 Prolog Rule Queries

 RDFS++ Inference

o AllegroGraph's inference engine can be turned on or off each time one runs a

query against the triple store. (Inference is turned off by default, which is the

opposite of standard Sesame behavior.)

 Geospatial Search

 Social Network Analysis

 Transactions

o "Commit" means to make a batch of newly-loaded triples visible in the auto-

commit connection. The two sessions are "synched up" by the commit. Any

"new" triples added to either connection will suddenly be visible in both

connections after a commit.

o "Rollback" means to discard the recent additions to the transaction connection.

This, too, synchs up the two sessions. After a rollback, the transaction

connection "sees" exactly the same triples as the auto-commit connection does.

o "Closing" the transaction connection deletes all uncommitted triples, and all

rules, generators and matrices that were created in that connection. Rules,

generators and matrices cannot be committed.

 Eliminating Duplicate Triples

o Filter Out Duplicate Results

o Filtering Duplicate Triples while Loading

o Working with Duplicates in Federated Stores

HTTP

It is possible for web developers and programmers alike to interact with AllegroGraph 4.2

completely using a RESTful HTTP protocol (using GET, PUT, POST) to add and delete triples, to

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 19 of 38 Submission date: 2011-02-28

query for individual triples and to do SPARQL and Prolog selects using the Sesame 2.0 HTTP-

interface with some extensions

Python

The Python API offers convenient and efficient access to an AllegroGraph server from a

Python-based application. This API provides methods for creating, querying and maintaining

RDF data, and for managing the stored triples.

Lisp

Lisp programmers can open and use triple-stores from within Lisp. Lispers can create

applications in the same image that the AllegroGraph server is running or use a remote-triple-

store to access data in client/server mode.

Other clients based on http REST Protocol include C#, Clojure, Perl, Ruby, Scala clients.

AllegroGraph is compatible with other semantic technologies or products. These include

TopBraid Composer9, RacerPro10 reasoning system, AGWebview11 web based managing system

for AllegroGraph, Gruff12 triple-store visual browser, Pepito13 data mining system, Cogito14

search extraction and classification system, Sentient Suite15 knowledge and project

management system.

3.3.3 OWLIM

Overview

OWLIM16 is a high-performance semantic repository, implemented in Java and packaged as a

Storage and Inference Layer (SAIL) for the Sesame RDF database. OWLIM is based on

Ontotexts‟s Triple Reasoning and Rule Entailment Engine (TRREE). The two editions of OWLIM

are SwiftOWLIM and BigOWLIM. In SwiftOWLIM, reasoning and query evaluation are

performed in-memory, while, at the same time, a reliable persistence strategy assures data

preservation, consistency, and integrity. BigOWLIM is the high-performance „enterprise‟ edition

that scales to massive quantities of data. Typically, SwiftOWLIM can manage millions of explicit

statements on desktop hardware, whereas BigOWLIM can manage billions of statements and

multiple simultaneous user sessions.

of query languages (e.g. SPARQL and SeRQL) and RDF syntaxes (e.g. RDF/XML, N3, Turtle).

Licence

Downloading and use of SwiftOWLIM is free of charge for any purpose. BigOWLIM is provided

free of charge for research, evaluation and development purposes. Ontotext offer maintenance

packages and commercial licences for BigOWLIM.

System requirements

OWLIM can be installed on Java JRE version 1.5 onwards (both 32-bit and 64-bit versions). If

custom rule-sets are used then a Java JDK version 1.6 inwards is required.

9
 http://www.franz.com/agraph/tbc/

10
 http://www.franz.com/agraph/racer/

11
 http://www.franz.com/agraph/agwebview/

12
 http://www.franz.com/agraph/gruff/

13
 http://www.franz.com/products/pepito/

14
 http://www.expertsystem.net/page.asp?id=1515&idd=200&lang=1

15
 http://www.io-informatics.com/

16
 http://www.ontotext.com/owlim/

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 20 of 38 Submission date: 2011-02-28

Implementation

SwiftOWLIM and BigOWLIM are identical in terms of usage and integration. The editions differ

in the respective version of the TRREE engine they are based upon, but share the same

inference mechanisms and semantics (rule-compiler, etc). The different versions of the TRREE

engine use different indexing, inference and query evaluation implementations, which results

in different performance, memory requirements, and scalability.

SwiftOWLIM is a fast semantic repository. Its key features are:

 reasoning and query evaluation performed in main memory;

 persistence strategy that assures data preservation and consistency;

 extremely fast loading of data (including inference and storage).

Although the reasoning is handled in-memory, the SwiftOWLIM SAIL offers a relatively

comprehensive persistence and backup strategy. The persistence of SwiftOWLIM is

implemented via writing to file in N-Triple format. The repository can be split into several files,

where all of these except one are read-only; the writable file is considered as both the source

from which the triples are loaded and the target where the new statements are stored. This

backup strategy ensures that no loss of newly asserted triples can occur in cases of power

failure or abnormal termination.

BigOWLIM is the most scalable semantic repository in the World. The key features of

BigOWLIM are as follows:

 The most scalable semantic repository in the World, both in terms of the volume of RDF

data it can store and the speed with which it can load and do inferencing;

 Pure Java implementation, ensuring ease of deployment and portability;

 Compatible with Sesame 2, which brings interoperability benefits and support for all

major RDF syntaxes and query languages;

 Customisable reasoning, in addition to RDFS, OWL-Horst, and OWL 2 RL support;

 Optimized owl:sameAs handling, which delivers dramatic improvements in performance

and usability when huge volumes of data from multiple sources are integrated.

 Clustering support brings resilience, failover and scalable parallel query processing;

 Geo-spatial extensions;

 Full-text search support;

 High performance retraction of statements and their inferences – so inference

materialisation speeds up retrieval, but without delete performance degradation;

 Powerful and expressive consistency/integrity constraint checking mechanisms;

 RDF rank;

 RDF Priming, based upon activation spreading, allows efficient data selection and

context-aware query answering for handling huge datasets;

 Notification mechanism, to allow clients to react to statements in the update stream.

BigOWLIM supports the so called „read committed‟ transaction isolation level, well known to

relational database management systems. It guarantees that changes will not impact query

evaluation, before the entire transaction they are part of is successfully committed. It does not

guarantee that execution of a single transaction is performed against a single state of the data

in the repository.

Regarding concurrency:

 multiple update/modification/write transactions can be initiated and stay open

simultaneously, i.e. one transaction does not need to be committed in order to allow

another transaction to complete;

 update transactions are processed internally in sequence, i.e. OWLIM processes the

commits one after another;

 update transactions do not block read requests in any way, i.e. hundreds of SPARQL

queries can be evaluated in parallel (the processing is properly multi-threaded) while

update transactions are being handled on separate threads.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 21 of 38 Submission date: 2011-02-28

The limitations of OWLIM are related to its reasoning strategy. In general, the expressivity of

the language supported cannot be extended in the Description Logic direction, because the

semantics must be able to be captured in (Horn) rules. The total materialisation strategy has

drawbacks when changes to the explicitly asserted statements occur frequently. For expressive

semantics and certain ontologies, the number of implicit statements can grow quickly with the

expected degradation in performance. BigOWLIM has a number of optimisations to reduce this

problem, e.g. special handling of owl:sameAs. Removing explicit statements can adversely

affect performance if the full closure needs to be recomputed.

Adding triples

The import and export of all major RDF syntaxes (XML, N3, N-Triples, Turtle, TRIG, TRIX) is

supported through Sesame.

Federation

The BigOWLIM software suite includes an additional Replication Cluster component that serves

as a Master node for a cluster. Its purpose is to manage and distribute atomic requests (query

evaluations and update transactions) to a set of standard BigOWLIM instances. The Master

node of the BigOWLIM Replication Cluster implements the Sesame Repository interfaces.

However, it does not store any RDF data itself, rather its function is to route queries and

update requests to a set of standard BigOWLIM instances (nodes). Worker nodes are standard

BigOWLIM repositories configured with identical rule-sets hosted in the openrdf-sesame Web

application running in a Java servlet container, such as Tomcat. These are accessible by the

Master node via the HTTP protocol of the exported SPARQL endpoint of the Sesame service.

Querying

OWLIM is bound to the data and query standards supported by Sesame. RDF is the basic data

standard; the supported query languages are: SeRQL, SPARQL, RQL, RDQL.

Reasoning

The supported semantics can be configured through the definition of rule-sets. The most

expressive pre-defined rule-set combines unconstrained RDFS and OWL-Lite. Custom rule-sets

allow tuning for optimal performance and expressivity. OWLIM supports RDFS, OWL DLP, OWL

Horst, most of OWL Lite and OWL2 RL.

OWLIM reasoning is implemented on top of the TRREE engine. TRREE17 stands for „Triple

Reasoning and Rule Entailment Engine‟. The TRREE performs reasoning based on forward-

chaining of entailment rules over RDF triple patterns with variables.

The semantics used is based on R-entailment (ter Horst 2005) with the following differences:

 Free variables in the head of a rule (without a binding in the body) are treated as blank

nodes. This feature can be considered „syntactic sugar‟;

 Variable inequality constraints can be specified in the body of the rules, in addition to

the triple patterns. This leads to lower complexity as compared to R-entailment;

 the [cut] operator can be associated with rule premises, the TRREE compiler interprets

it like the ! operator in Prolog;

 Two types of inconsistency checks are supported. Checks without any consequences

indicate a consistency violation if the body can be satisfied. Consistency checks with

consequences indicate a consistency violation if the inferred statements do not exist in

the repository;

 Axioms can be provided as a set of statements, although those are not modelled as

rules with empty bodies.

17

 http://www.ontotext.com/trree/index.html

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 22 of 38 Submission date: 2011-02-28

The TRREE can be configured via the rule-sets parameter, that identifies a file containing the

entailment rules, consistency checks and axiomatic triples. The implementation of TRREE relies

on a compile stage, during which custom rule-sets are compiled into Java code that is further

compiled and merged in to the inference engine.

The edition of TRREE used in SwiftOWLIM is referred to as „SwiftTRREE‟ and performs

reasoning and query evaluation in-memory. The edition of TRREE used in BigOWLIM is referred

to as „BigTRREE‟ and utilises data structures backed by the file-system. These data structures

are organized to allow query optimizations that dramatically improve performance with large

datasets, e.g. with one of the standard tests BigOWLIM evaluates queries against 7 million

statements three times faster than SwiftOWLIM, although it takes between two and three

times more time to initially load the data.

Datatypes

Geo-spatial Extensions

BigOWLIM has special support for 2-dimensional geo-spatial data that uses the WGS84 Geo

Positioning RDF vocabulary18 (World Geodetic System 1984). Special indices can be used for

this data that permit the efficient evaluation of special query forms and extension functions

that allow:

 locations to be found that are within a certain distance of a point, i.e. within the

specified circle on the surface of the sphere (Earth), using the nearby(...) construction;

 locations that are within rectangles and polygons, where the vertices are defined using

spherical polar coordinates, using the within(...) construction

RDF Rank

RDF Rank is an algorithm that identifies the more important or more popular entities in the

repository by examining their interconnectedness. The popularity of entities can then be used

to order query results in a similar way to internet search engines, such as how Google orders

search results using PageRank4.

Full text search

Two approaches are implemented in BigOWLIM, a proprietary implementation called „Node

Search‟, and a Lucene-based implementation called „RDF Search‟. The two approaches are

collectively referred to in this guide as „full-text indexing‟ and both of them enable OWLIM to

perform complex queries against character data, which significantly speeds up the query

process. To select one of them, one should consider their functional differences

Basic data types

Currently BigOWLIM doesn't maintain additional datatype-specific indices. Nnumeric datatype

indexing is at TODO list for a near future implementation.

Programming with OWLIM

Sesame openRDF framework

OWLIM is built around the RDF data model classes from Sesame and for this reason Sesame is

the preferred API to use and the most efficient. OWLIM uses the RDF Data Model classes

throughout. The SAIL component (Storage And Inference Layer) contains the classes and

interfaces for accessing various storage and inference implementations in a standard way.

OWLIM is implemented as a SAIL plug-in to the Sesame framework. At a higher level, the

Repository API provides uniform application layer access to Sesame and includes methods for

loading/exporting RDF data, preparing and executing queries and so on. The framework

includes a console application, a command-line utility for various administration tasks, such as

creating/deleting repositories, importing/exporting RDF data, etc.

18

 http://www.w3.org/2003/01/geo/

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 23 of 38 Submission date: 2011-02-28

Jena adapter

The BigOWLIM Jena adapter is essentially an implementation of the Jena DatasetGraph

interface that provides access to individual triples managed by a BigOWLIM repository through

the Sesame API interfaces. It is not a general purpose Sesame adapter and cannot be used to

access any Sesame compatible repository, because it utilises an internal BigOWLIM TRREE API.

The adapter comes with its own implementation of a Jena „assembler‟ factory to make it easier

to instantiate and use with those related parts of the Jena framework. Query evaluation is

controlled by the ARQ19 engine, but specific parts of a Query (mostly batches of statement

patterns) are evaluated natively through a modified generator plugged into the Jena runtime

framework. There is no Jena support for SwiftOWLIM currently.

ORDI

The Ontology Representation and Data Integration (ORDI20) framework is an open-source

ontology middleware developed in Java. The main advantage for accessing OWLIM through

ORDI is that the triple-set data structures are exposed.

3.4 Distribution and centralization

The centralization/decentralization of storage should be discussed in the context of an overall

ebbits systems architecture. Our assumption here is that the ebbits solution should support a

range of alternatives considering both centralized and distributed architectures for data

management and the control of resources.

We can think of two extremes with respect to the distribution of ebbits and storage facilities

and data.

In a fully distributed approach, storage is distributed to the leaves in the network topology.

This means that all data and events are kept as close to their originating source as possible.

Pros

 Data is raw (reduced risk of post processing errors)

 Everything is known about a device

 No dependency on central components

Cons

 Devices may be constrained concerning storage capacity

 If need to correlate different devices, reliable time synchronization is needed. This may

require an external time server.

 Global data analysis becomes more complex.

In a highly centralized storage alternative, sensor data and events are propagated from leaf

nodes (e.g., devices) to one or more central components in the architecture, say ebbits

application servers.

Pros

 This will provide for an integrated view of all data and events on a system/global level.

This may facilitate performance efficiency in mining and data analysis, e.g., in

traceability applications.

 A centralized architecture will facilitate scalability and security.

Cons:

 A centralized solution may impede reliability, although measures can be taken to

improve e.g, the reliability and security of storage.

19

 http://jena.sourceforge.net/ARQ/
20

 http://www.ontotext.com/ordi/

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 24 of 38 Submission date: 2011-02-28

 Potential data loss, since data & events may have gone through multiple stages of

filtering and/or aggregation.

As in any systems architecture design there are several alternative solution in between these

two extremes.

Below we sketch an initial architecture for data fusion and event management in ebbits. This is

intended as a context in the further analysis of storage distribution in the system.

Figure 5: ebbits data fusion architecture

The architecture perspective here is a functional component model, emphasizing the flow of data/events and
control (it could also be projected as a layered architecture). Device components (layer) at the left (bottom)

and the and Business rules and services components at the far right (top).

Initial component descriptions

Devices 1, 2These devices can be sensors, actuators or even subsystems

spread over the ebbits physical environment. For example, it can be a

temperature sensor, an RFID reader or some sensor measuring mechanic

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 25 of 38 Submission date: 2011-02-28

movement (e.g. pig feeder or roller rotate). Devices generate physical events

such as a new temperature value (stimuli). Ebbits device storage occurs as close

as possible to the device itself. All data kept close to the device, in order to

facilitate traceability capability in the ebbits architecture

 Device Gateway Node A & B

The ebbits device gateway node can be based on a PDA or laptop. It enables rule

assessment derived from its associated network devices as well as performs rule

execution on the gateway node level. Each gateway node can be extended with

its own storage. This storage can be used for caching events, etc. in the case of

network failures and thereby enabling store and forward. Device gateway nodes

combines physical stimuli into device events such as “light is turned on”.

Device Operational Rule Engine

Each gateway will have a rule engine intended to run a set of device specific

rules, execute it locally. For example, not allow the temperature on a device 1 to

exceed 5 degrees.

 Ebbits Data Fusion Gateway

The ebbits data fusion gateway has the aim to fuse data that are gathered via a

number of ebbits environment‟s device gateway nodes. Alternatively, the device

gateway nodes and the data fusion gateway can be implemented within the

same operating platform and thereby enhance the local processing performance.

The data fusion gateway combines events from one or several devices and

creates application events.

Data Fusion Engine

The data fusion engine processes (e.g. aggregates and filters) data from sensors

and devices, taking time into consideration. The fused data is further sent to the

event processor component.

Event Processor

The event processor consumes events and data and creates new application

events according to its event management logic. The event processor will

dispatch events to the ebbits central node.

 Central Ebbits Node

The central ebbits node is intended to run on high performance machines in the

ebbits architecture. By so it will be able to offer the computer power needed to

support more intelligent components. This central node can be modelled and

positioned as more centrally within an ebbits environment, e.g. at the ebbits

service provider. It requires a stable communication with external resources and

information providers.

Business Rule Engine

This rule engine process a set of business rules defined by the ebbits platform

user and describes the intended work flow organisation of the specific domain.

Business rules are mapped to services via the orchestration engine. The rule

engine uses its own repository. The business rule engine combines one or more

application events into a business event which is forwarded to external business

system.

Business Rule Repository

Here the business rule engine stores and retrieves the set of rules.

Orchestration Engine

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 26 of 38 Submission date: 2011-02-28

The orchestration engine performs tasks on the request pulls over the ebbits

network. This can partly be configured by the business rule engine and partly

manually through an interface.

Ontology Database

Here the device ontology is stored for use within the ebbits central node.

Event Manager

The ebbits event manager handles events that are broadcasted throughout the

network architecture. It deals with events processed on all levels in the ebbits

platform and provides event management to external parties.

Event Database

Provides a chronological and/or source-based log for all events, intended

to support data mining and traceability analysis.

[Policy Manager] + External Services & Repository Interface

The policy manager provides access controls by handling communication to

external resources. It mediates access to the different services/repositories

involved in the ebbits global system.

ERP Systems

For example, SAP, COMAU, etc.

National Databases

For example, regulatory databases for national agriculture control.

External Semantic Stores

For example, a semantic store in a different ebbits node such as an Event

database.

3.4.1 Distribution and centralization aspects at multi-sensor data fusion

Some contents from this section have been published in the ebbits Deliverable D5.1.1, Section

5 “Multi-sensor Data Fusion” already.

Sensing

In ebbits project, sensing is a relevant technological approach to drive intelligent service

structures. In particular, mobile sensing can be leveraged to monitor many products

(perishable goods, auto parts etc) during the end of the life-cycle. Mobile sensing opens new

possibilities for data collection through different carrier medium, i.e. human being, robot,

vehicle etc wearing or carrying mobile sensors whose data can be sent over a wireless

communication channel. In particular, the deployment of smart phones as sensor nodes

facilitates applications that allow for observations of phenomena or events, which previously

were hard to perceive or even impossible. This is known as crowd sourcing. In the traceability

scenario the subject to observe are pigs, in fact „from farm to fork‟. Due to transports, climatic

changes, or improper nutrition etc animals are susceptive to momentous diseases. Hence, to

avoid the widespread of disease pigs wear mobile sensor nodes pigs, so that at an early stage

a (contagious) disease can be identified. Brownfield development in manufacturing site, i.e.

plant is already running and comprises several machines, it is more challenging (Hopkins and

Jenkins 2008), as you will need to deploy new sensors and actuators in the immediate

presence of existing (legacy) systems. In this sense, it is desirable to deploy mobile sensor

nodes as an overlay system to the existing infrastructure so that the risk of introducing

technical problem to the running production system can be minimized.

Dealing with massive amount of sensor data, requires an intelligent data management that

include aggregating, filtering, and joining data into useful information. This approach is known

as Multi-sensor data fusion. Multi-sensor data fusion is a technology that has been formalized

since 70s specifically in military applications. Many architecture, model, and algorithms have

been developed addressing various data fusion applications. JDL model is the most used and

well known model (Liggins, Hall et al. 2009). It provides a partition of sensor fusion‟s

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 27 of 38 Submission date: 2011-02-28

functions. However, it does not describe any process model and architectural design. Thus, in

ebbits, it is necessary to complete this model from different architectural views to facilitate a

common understanding of sensor fusion processes for ebbits domains.

The most mature area of the JDL model is level 0-1 processes such as target tracking,

position, velocity determination, and object classification (friend or foe). All of these

applications tried to estimate the certainty of information obtained from sensor data.

Nonetheless there is still no general solution that is able to overcome challenges such as object

densities, rapid movement, and signal propagation. Many algorithms in this level are required

in ebbits scenarios for instance, object tracking is useful for tracking animals in farms and

goods in factories, increasing the certainty of wireless transmission and sensors readings in

places with harsh conditions. Algorithms have been maturely used in this level includes:

filtering algorithms, aggregation and compression. Level 2 and 3 fusions are dominated by

knowledge based such as rule based, fuzzy logic, intelligent agents, and Bayesian beliefs.

Although these areas are quite promising to provide an intelligent information, unfortunately

these techniques are still immature and do not provide any stable operational systems

(Liggins, Hall et al. 2009). The main challenges in this are establishing a common and reliable

knowledge base and representing it uniformly, many works on fuzzy logic have shown

promising results, though. Another challenge that ebbits will contribute to this area is that it

aims at massive scale of distributed and heterogeneous systems that have diverse knowledge

representations.

Ebbits requires defining a new framework that reflects process model as well as different

architectural views of information fusion. Furthermore, the ebbits must also define a concept to

handle diverse knowledge representations distributed in the internet of things. An example

where level 2 and 3 processing will be needed in ebbits is e.g.: for inferring intelligent context

for energy savings purposes.

Control Management

Many multi-sensor fusion models have included control theory that discusses relationship of

sensing and control as well as sensing-control loop for performance assessment of the system.

Up to now, the main challenges in this area are to model task objectives, manage resources

based on the objectives, and provide information that satisfies the decision makers‟ needs.

ebbits also aims at a self regulating system, which need an automatic control and real time

system assessments. On the other hand, if the control and assessment is done manually

through human intervention, the human computer interaction concepts must also be defined.

Dorf and Bishop defines control system as an interconnection of components forming a system

configuration that will provide a desired system response (Dorf and Bishop 2008). Industrial

control system covers several standard solutions that have been used in automatic

manufacturing system such as Supervisory Control and Data Acquisition System (SCADA),

Distributed Control System (DCS), Advance Process Control, smaller controller units such as

Programmable Controller Logic (PLC), and Integrated Control and Safety System (ICSS).

SCADA usually supervises and coordinates an entire site or even multiple distributed sites.

However it does not control in real time (it does not utilize any real time operating system).

DCSs are dedicated for controlling automated processes of batch productions. DCSs are

intended to distribute intelligence in production plants by coordinating PLCs that control

equipments independently. PLC is a digital computer used for automating electromechanical

processes that evolves from automotive industry in the 70s(Zhang 2008). PLC is now widely

used in almost any production automation areas including slaughterhouses and feeding

systems in farms. Safety controls in manufacturing equipments are regulated by Integrated

Control and Safety System (ICSS). The ICSS usually includes three types of safety system

such as Process Shutdown System, Emergency Shutdown/Depressurization, and Fire-Gas

Safety System.

Wireless sensor and actuator network (WSAN) propose a promising technology to replace and

complete the existing technology in the manufacturing plans as well as food production

because wireless offers a better flexibility in deployment than wired solution. However,

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 28 of 38 Submission date: 2011-02-28

wireless communication introduces higher complexity in communication means as it is more

vulnerable against interferences. There have been many theoretical research and work being

done to increase the wireless network resilience. However, there has only been a limited

amount of practical work in the field. Thus, further studies applying wireless networks in the

manufacturing plants and food production in context of ebbits project should be conducted.

The existing control theories always assume perfect network reliability which is not the case in

wireless communication. Therefore, there is in ebbits a need to introduce communication

parameters within the existing control theories. Energy supply in WSAN is an important factor.

In this section, many works have been explored to conserve energy supply of WSAN by

controlling the nodes and network behaviors. In ebbits we need to study the communication

patterns in order to conserve the energy supply effectively.

 Deriving Knowledge from sensor data

There exist many approaches for deriving knowledge from sensor data. One of the techniques

is by tagging sensor data with metadata. The tagging process is defined in sensor language

such as SensorML21 and EEML22. Metadata can be the processed to derive the meaning of the

data. Processing the metadata can be done by probabilistic inference algorithms such as

Bayesian and Dempster-Schafer, fuzzy logic, or as simple as using rule engines. The main

drawback for rule engines is that the rules are not flexible meanwhile in the real world there

exist exceptions and exceptions of an exception which make rules invalid. Thus, in ebbits we

would like to investigate the business rule engines, that are commonly used in industry and

hybrid solution between rule engine and probabilistic inference approaches. WS-BPEL23

provides a standard language that is used by rule engines in SOA.

Mining data and information from distributed sources can be done by using different

approaches e.g.: approaches evolving from database domain, web, and heterogeneous

sources. New approach in database domain is called Dataspace (Franklin et al., 2005) that

increases semantic cohesion over time by assuming that different parties provide mappings of

how different knowledge representations can be linked. Thus providing an unified architecture

for reference reconciliation, schema matching and mapping, data lineage, data quality and

information extraction. In web domain semantic web allows software agents / crawler to query

information from distributed sources examples of this approach are SemaPlorer (Schenk et al.

2008) and SearchWebDB (Tran et al. 2008). Coming from web 2.0, many mesh up platforms

such as yahoo pipe are used to aggregate information and services. Aletheia24, a German

national project for harmonizing product information uses semantic abstraction and human

interference for resolving conflict. OKKAM25, an FP7 EU ongoing project, tries to connect the

corporate structured enterprise data with unstructured data such as product documentations

that are written from humans.

Data populated from distributed sources, documents and any other sources might present

erroneous knowledge. There are 2 ways to deals with this kind of data, first to purge erroneous

state and secondly by finding ways to work with it by modifying the reasoning approach

(Huang et al 2005). Erroneous might be caused by inconsistency, incompleteness, and

redundancy. Another drawback of ontology is the inability to represent and reason upon

uncertainty. There exist few works trying to present uncertainty e.g.: OWL-DL and PR-OWL

(Probabilistic information in OWL).

Context aware computing is a branch of computer science that uses sensor data to change the

application behavior. Modeling context can be done by Key Value Models, Markup Scheme

Models, Graphical Models Object-Oriented Models, Logic-Based Models, and Ontology Based

21

 http://www.opengeospatial.org/standards/sensorml
22

 http://www.eeml.org/
23

 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
24

 http://www.aletheia-projekt.de/
25

 http://www.okkam.org

http://www.opengeospatial.org/standards/sensorml
http://www.eeml.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.aletheia-projekt.de/
http://www.okkam.org/

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 29 of 38 Submission date: 2011-02-28

Models (Strang and Linnhoff-Popien, 2004). Hydra follows a hybrid approach that models low

level data through key-value and high level context through ontology model. Hydra introduced

three types of context: data, semantic, and application.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 30 of 38 Submission date: 2011-02-28

4. Ebbits use cases analysis

This section provides an analysis of the ebbits use cases. The use cases imply requirements on

all of the aspects of semantic stores.

4.1 Scalability and queries

From the ebbits requirements in the Deliverables D2.1 and D2.4 it follows that an RDF store

used in ebbits has to provide query and reasoning functionality about large knowledge bases.

For this reason a system providing distributed hierarchical knowledge bases, with in-memory

processing of the required subset seems reasonable for a high performance. In the following

we describe technologies that tackle especially those challenges and could be candidates for

prototypes within the ebbits project.

Sesame is an API for storing and querying RDF data. Figure 6 shows the class diagram of the

RDF data model.

Figure 6: Class diagram of the RDF data model

Sesame has two main communication interfaces: the Sail API and the Repository API. The

Storage and Inference Layer (Sail) API is a low level system API for RDF stores and inference

engines. Its purpose is to abstract from the storage details, allowing various types of storage

and inference to be used (Aduna 2010a).

The Repository API is a higher level API and is meant to be the main API that people can

program against. It offers various methods for uploading data files, querying, and extracting

and manipulating data. It comes in two flavors: local and remote.

Figure 7: Example of a Sail stack

Sails can be stacked on top of other Sails. By stacking a Sail on top of another, all calls for the

bottom Sail will pass through the Sails that are on top of it (see Figure 7). This architecture is

used for a whole range of applications: access control, pluggable inference engines, hooks to

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 31 of 38 Submission date: 2011-02-28

external services, etc. A concrete example is a mixed forward-/backward-chaining inference

engine, which will wrap transactions to do its forward-chaining work upon commit and extend

queries to do its backward-chaining work.

For scalability reasons, all data that is extracted from a Sail object is returned in the form of

(forward-only) iterators. This allows one to fetch the entire set of stored statements, even if

the set is too large to be stored in main memory.

In the Aletheia research project a Sail implementation used the Lucene API as an external

service for indexing literals in the RDF triples stored in a repository. This allows to combine a

full text search over RDF triples and any other graph query in SPARQL in a similar way as

described in (Minack et al. 2008).

Through the Sail mechanism, Sesame claims to support federated repositories in a distributed

environment. The federation “distributes sections of the query to different members based on

the data contained in each of the members. These results are then joined together within the

federation to provide the same result as if all the data was co-located within a single store”

(Aduna 2010b).

Distribution imposes not only new challenges to storage and querying but also to reasoning.

The recent publication (Urbani 2010) addresses this issue with a MapReduce frame-work for

distributed computation of the closure of an RDF graph under the OWL Horst semantics. The

WebPIE inference engine is built on top of the Hadoop platform, deployed on a cluster of 64

machines and evaluated with datasets containing up to 100 billion triples. The results have

shown that the system is scalable and vastly outperforms competing systems when comparing

supported language expressivity, maximum data size and inference speed (Urbani 2010).

4.2 Reasoning

User requirements from D2.4 report were analysed to identify these, which can have some

relation to a triple store capabilities. In the table below, these requirements are presented,

together with relevance to some of analysed properties of triple stores analysed in previous

chapters.

Table 8: Possible Triple Store utilisation in relevance to the User Requirements

Req.

No.

Req. Description Relevance to triple stores. Possible

utilisation of a selected triple store to fulfil

the requirement.

functional requirements

17

Semantic relationships between data.

Currently, any data is stored in a simple

database. Hence, data is available, but

cannot be interrelated intelligently.

Data stored in a triple store can be used

for reasoning and querying. The cost is a

need for semantic description of existing

data. Data already stored in databases

can be usually described automatically or

semi automatically

18

Aggregating collected sensor data at a

central point.

The aggregation of collected data is

important for analysing the data.

Federation support in triple stores enables

storing data on several places while still

analysing it as one

19

Farmers are able to retrieve optimized

models from research.

Farmers are willing to share data if they

could get something in return such as

models to optimize feeding process.

Named graph support in triple stores

enables using several research models

together with user data without mixing

them

20 System can feed the farms data to Export and import functionality of triple

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 32 of 38 Submission date: 2011-02-28

 research.

Most of the farming models are developed

by research organizations, universities

etc.

stores, together with named graph

support enables combining several

independent models together.

70

Support system for comparing different

energy consumption among plants and

corresponding processes.

Management would like to learn from

other plants if they use energy more

efficiently.

Federation support in triple stores enables

remote usage of models. Named graph

support together with import enables

reasoning and querying above combined

resources

71

Summary of energy related information at

operational level for supporting

management level optimizing energy use.

Operational management needs a

summary of energy related information

that help them making decision to

optimize the energy usage.

Querying of triple store is a possible

solution

72

Recognition of energy wasting behaviours.

Help decision makers to optimize energy

usage.

Reasoning or querying in ontologies can

help to identify these behaviours

73

Items need to be traced within an

enterprise.

Goods and items need to be traced within

one farm or enterprise.

Support for location data is needed in

triple store to enable location aware

querying

75

Information needs to be described in a

standardised way.

Enterprises working in the same sector

adapt different ways to describe the input,

the production processes, and the output;

thus it will not be possible to communicate

information either to providers or to

consumers.

Triple stores can store heterogeneous

data interoperable via semantic relations

between them

77

Associate meta-information to items.

In parallel to the actual lifecycle (grow up

of the animal, feeding, butchering,

transportation, selling, consuming) there

exists additional information such as the

amount of food, medication an animal has

had, the energy for the production and

transportation, that needs to be acquired

and associated with the (bits and pieces

of) animal.

Several ontologies can be used at once in

a triple store; reasoning can help to

overcome possible heterogeneities

between multiple semantic data sources.

82

Support fuzzy or probability concepts for

reasoning.

There is no reasoning algorithm that is

able to solve any kind of cases.

More investigation of reasoning

capabilities is needed for that matter.

However, some triple stores are modular

enough to use any external reasoner.

Probabilistic reasoners (e.g., Pronto) can

be evaluated for performance and

included into the solution.

84

Different views on the device ontology.

It should be possible to present a

developer user with different perspectives

on the device ontology, depending on that

users functional needs (e.g., a services

perspective, device category perspective.

etc.).

Triple stores use recommended W3C

standards to enable use of external tools

for visualisation of ontologies

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 33 of 38 Submission date: 2011-02-28

86

Protection of System Integrity.

In order to prevent an inexperienced user

to cause malfunctions by changing system

configurations, the middleware should

monitor, analyse and, if necessary,

prevent or give notifications about faulty

changes.

Transactions style changes has to be

supported in the triple store

87

Handling of different device versions in

device ontology.

The device ontology should be able to

handle different versions of a device.

Time snapshots of ontologies and selective

work with subset of these has to be

supported in the triple store

93

Download and harmonisation of third

party device ontologies.

Device ontological models describing

devices, which will be provided by

manufacturers or third parties, should be

automatically downloaded (updated) and

harmonised to ensure the same

ontological view. Formal definition of

ontologies should be realised using the

world wide accepted formats,

recommended by W3C, such as RDF,

OWL, OWL-S. Hydra open requirements

W3C standards and recommendations has

to be used in triple stores

103

The system should allow the correlation of

information emerging from several

sources.

In order to easily analyse information, the

system should allow for the correlation of

information from different sources on a

farm or enterprise.

Reasoning support should enable a

correlation of concepts in different

ontologies

105

Aggregate data from various data bases

and sources.

Information will be stored in several

places, but needs to be combined in some

place and assigned to the actual product

or entity.

Data should be imported into a triple store

using recommended formats and

formalisms

108

Different Views on the Data is necessary.

We need services that provide different

views on the data cloud by combining data

from different sources.

Querying of ontology and ontology

visualisation can support these

non functional requirements

2

The ebbits should be able to handle

massive number of devices.

The future use cases of eBBits need to

handle massive number of devices and

applications within and cross enterprises,

i.e. ci. 300-1000 in a manufacturing plant

and 500 in a farm.

Scalability has to be an important

measure when selecting a triple store to

be used

22

Resilience and adaptable to environment

condition changes.

Environmental changes such as lighting,

temperature affect the results of

manufacturing process. So far machines

are tuned manually by technicians.

Adapting to environmental condition can

lead to reducing energy consumption

Time dependent values has to be

supported in selected triple stores

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 34 of 38 Submission date: 2011-02-28

e.g.:reduce heater temperature when it's

warm outside.

24

Filtering to Obtain relevant Information.

Too much information overwhelm farmers

while making decisions.

Efficient filtering using queries is

supported in triple stores. Duplicate

information filtering can also help

61

Scalable solution (scale up and scale

down).

Adjustment to desired number of

production, require to add or reduce

machines.

Scalability enables triple stores to work

with different amounts of data. From

hundreds of triples on a HW resource-

weak systems up to billions of triples on

distributed multi-core high on RAM

systems

110

End-users need to be able to managment

their distributed data.

Farmers want to manage their distributed

data, because today they have no full

control of data.

Tools for managing triple store should be

available

4.3 Distribution and centralization

In a massive distributed environment as foreseen in ebbits, access to resources such as

services and device features may be radically different, ranging from human-only access (e.g.

screens and buttons), to exclusive M2M (machine-to-machine) communication over standard

protocols and wireless transports. This wide array of access mechanisms might be acceptable

for the individual device manufacturer, but not for the developer who wants to build solutions

based on a vast number of devices from different manufacturers with obscure access

protocols, that for the most remain proprietary or unknown. This makes it almost impossible

for existing devices to communicate and to interchange useful information and/or commands

structures, without the direct involvement of the manufacturers of the devices in one way or

the other. The way to access intelligent services across a distributed network is for the ebbits

platform (see Figure 8) to create a ubiquitous communication infrastructure that automatically

and dynamically connects to sensors and devices in the physical world in e.g. manufacturing

facilities or in private smart homes. It further connects to mainstream backend information

systems, public authentication systems and regulatory information sources using semantic web

services and finally connects to human users in dispersed geographical locations (e.g.

professional users in technical support, field service and other business environments as well

as ordinary consumers in shops or at home).

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 35 of 38 Submission date: 2011-02-28

Figure 8: The ebbits platform with a prototypical actualization of SOA

The ebbits platform consists of subsets of production servers for data management, event

management, security, application execution and communication where all servers are to

interoperate in an open architecture on the basis of web services. The ebbits SOA is completely

platform agnostic and scalable. The implementation of SOA for product lifecycle management

and manufacturing should follow ISO 10303 specifically the following application protocols:

Manufacturing APs:

 AP 219, Dimensional inspection information exchange

 AP 223, Exchange of design and manufacturing product information for cast

parts

 AP 224, Mechanical product definition for process plans using machining features

 AP 238, Application interpreted model for computer numeric controllers

 AP 240, Process plans for machined products

Life cycle support APs:

 AP 239, Product life cycle support

 AP 221, Functional data and schematic representation of process plants

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 36 of 38 Submission date: 2011-02-28

5. Conclusions

This Deliverable forms the starting point for Task 4.1 of the ebbits project. It presents the

state of the art of semantic stores and brings it into relation to the ebbits use cases in order to

identify the gap to be filled during the ebbits project in Work Package 4 “Semantic Knowledge

Infrastructure”.

Section 3 presents the state of the art of semantic stores with the aspects (1) scalability of

RDF stores and query performance, (2) reasoning, and (3) distribution and centralization

strategies. All three aspects are picked up in Section 4 again when they are brought into

relation to the ebbits use cases and requirements.

Scalability of RDF stores and query performance is a subject which has been investigated in

the research community in studies to compare the performance of practical implementations

with given datasets. The W3C maintains a collection of RDF store benchmarks and a subset

that is relevant for the ebbits project, has been presented. In several test settings, Virtuoso

performed best, followed by Sesame. Since OWL reasoners can be connected to state of the

art RDF stores, an approach for OWL reasoner benchmarking has been presented. As it has

been expected, current implementations offer a good starting point but contain bugs in the

implementation as well as unsolved conceptual problems. Considering ebbits use cases and

requirements, an RDF store used in ebbits has to provide query and reasoning functionality

about large knowledge bases at high performance. Technical candidates to meet those

requirements seem to be systems that provide (1) distributed hierarchical knowledge bases

with query distribution and result fusion, with (2) in-memory processing of the required

subset, and with (3) a modular architecture that allows for the integration of existing

components, e.g. high performance full text search engines.

The overview on the state of the art of reasoning in RDF stores discusses two selected RDF

stores in detail. They have been selected from a set of the most known triple stores containing

BigOWLIM, SwitftOWLIM, Bigdata, AllegroGraph, OntoBroker, Sesame, and Jena. The selected

triple stores are BigOWLIM and AllegroGraph. BigOWLIM is capable of efficiently working with

up to 20B triples and AllegroGraph even with more than 20B triples. Both appear suitable in

the context of the ebbits requirements and use cases. Ebbits semantic subsystems will be

developed in a modular way, so that usage of different triple stores will be possible without too

much effort needed for configuration or reimplementation.

Distribution and centralization aspects are an important part of the considerations in the ebbits

architecture. Those decisions also have effects on the nature of the used RDF stores. A section

about those aspects starts with a general discussion of distributed vs. centralized systems,

bringing the ebbits data fusion architecture into context as a system between those two

extremes. References to other ebbits Deliverables bring the current Deliverable into context

and provide an overview, while avoiding the pure repetition of concepts already explained in

those Deliverables. The aspects discussed cover sensing, control management, and the

derivation of knowledge from sensor data that is stored in an ebbits RDF store.

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 37 of 38 Submission date: 2011-02-28

6. References

(Aduna 2010a) Aduna. User Guide for Sesame 2.3. Available online at

http://www.openrdf.org/doc/sesame2/2.3.2/users/ch03.html. 2010.

(Aduna 2010b) Aduna. Federation Sail. Available online at

http://www.openrdf.org/doc/alibaba/2.0-beta4/alibaba-sail-

federation/index.html. Last Published 2010-12-23.

(Baader 2009) Franz Baader: Description Logics. In: Reasoning Web: Semantic

Technologies for Information Systems, 5th International Summer School

2009, LNCS 5689, Springer–Verlag, 2009, pp. 1–39.

(Baader and Nutt 2002) Baader, F., Nutt, W.: Basic Description Logics. In: The Description

Logic Handbook, Cambridge University Press, 2002, pp. 47-100.

(Bail, Parsia and Sattler 2010) Samantha Bail, Bijan Parsia and Ulrike Sattler. JustBench:

A Framework for OWL Benchmarking. In Proceedings of the 9th

International Semantic Web Conference (ISWC2010). 2010.

(Bizer and Schultz 2009) Chris Bizer and Andreas Schultz. Berlin SPARQL Benchmark

Results. Available online at http://www4.wiwiss.fu-

berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html. 2009.

(Bock et al. 2008) Jurgen Bock, Peter Haase, Qiu Ji, Raphael Volz: Benchmarking OWL

Reasoners. In: Proceedings of the ARea2008 Workshop. CEUR Workshop

Proceedings, vol. 350., 2008.

(Davies et al. 2006) John Davies, Rudi Studer, Paul Warren: Semantic Web Technologies.

Trends and Research in Ontology-based Systems. John Wiley & Sons, Ltd,

Chichester, England, 2006.

(Dorf, R. and R. Bishop 2008) Modern control systems, Pearson Prentice Hall.

(Fielding, R. 2000) Representational state transfer (REST). Chapter 5 in Architectural Styles

and the Design of Networkbased Software Architectures, Ph. D. Thesis,

University of California, Irvine, CA, 2000.

(Franklin et al. 2005) Franklin, M., Halevy, A., Maier, D.: From Databases to Dataspaces: A

new Abstraction for Information Management, Sigmod Record, ACM,

34(4):27, 2005, p. 33

(Guo et al. 2005) Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL Knowledge

Base Systems. Journal of Web Semantics 3(2), 2005, pp158-182.

(Hopkins, R. and K. Jenkins 2008) Eating the IT Elephant: Moving from Greenfield

Development to Brownfield, IBM Press.

(Huang et al. 2005) Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent

ontologies. In: Proceedings of the International Joint Conference on

Artificial Intelligence - IJCAI‟05, 2005.

(Lee et al. 2008) Chulk Lee, Sungchan Park, Dongjoo Lee, Jae-won Lee, Ok-Ran Jeong,

Sang-goo Lee: A Comparison of Ontology Reasoning Systems Using

Query Sequences. In: ICUIMC '08, Proceedings of the 2nd international

conference on Ubiquitous information management and communication,

ACM New York, 2008, pp. 543-546.

(Liggins, Hall et al. 2009) Liggins, M. E., Hall, D. L., Llinas, J.: Handbook of Multisensor Data

fusion, Theory and Practice. Boca Raton, FL, CRC Press, 2009.

(Ma et al. 2006) Ma, Li and Yang, Yang and Qiu, Zhaoming and Xie, Guotong and Pan, Yue

and Liu, Shengping. Towards a Complete OWL Ontology Benchmark. In:

http://www.openrdf.org/doc/sesame2/2.3.2/users/ch03.html
http://www.openrdf.org/doc/alibaba/2.0-beta4/alibaba-sail-federation/index.html
http://www.openrdf.org/doc/alibaba/2.0-beta4/alibaba-sail-federation/index.html
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html

ebbits D4.1 Analysis of Semantic Stores and Specific ebbits Use Cases

Document version: 2.0 Page 38 of 38 Submission date: 2011-02-28

The Semantic Web: Research and Applications. LNCS 4011. Pages 125-

139. 2006

(Minack et al. 2008) Enrico Minack, Leo Sauermann, Gunnar Grimnes, Christiaan Fluit and

Jeen Broekstra. The Sesame Lucene Sail: RDF Queries with Full-text

Search. Technical Report. Available online at

http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/Publicati

ons/Minack%202008.pdf. 2008.

(Pearl 1997) Judea Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann Publishers Inc., 1997.

(Schenk et al. 2008) Schenk, S., Saathoff, C., Baumesberger, A., Jochum, F., Kleinen, A.,

Staab, S., Scherp, A.: SemaPlorer - Interactive Semantic Exploration of

Data and Media based on a Federated, 2008.

(Schmidt 2009) Michael Schmidt, Thomas Hornung, Georg Lausen, Christoph Pinkel.

SP2Bench: A SPARQL Performance Benchmark. In Proc. ICDE 2009,

Shanghai (China).

(Schmidt 2010) Michael Schmidt. Foundations of SPARQL query optimization. PhD thesis.

Universität Freiburg. 2010.

(Serrano et al. 2007) Serrano, J. M., Serrat, J., Strassner, J.: Ontology-Based Reasoning for

Supporting Context-Aware Services on Autonomic Networks. In: Proc. of

ICC '07, IEEE International Conference on Communications, 2007, pp.

2097-2102.

(Strang and Linnhoff-Popien, 2004) Strang, T., Linnhoff-Popien, C.: A Context Modeling

Survey, In: Proc. of Workshop on Advanced Context Modelling, Reasoning

and Management, 2004.

(ter Horst 2005) ter Horst, H. J.: Combining RDF and Part of OWL with Rules: Semantics,

Decidability, Complexity. In: Proc. of ISWC 2005, Galway, Ireland,

November 6-10, 2005. LNCS 3729, 2005, pp. 668-684.

(Tran et al. 2008) Tran, T., Wang, H., Haase, P.: SearchWebDB: Data Web Search on a

PayAsYouGo Integration Infrastructure, Technical Report, Universität

Karlsruhe (TH), 2008.

(Urbani 2010) Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen,

and Henri Bal. OWL reasoning with WebPIE: calculating the closure of 100

billion triples. Proceedings of the Seventh European Semantic Web

Conference. LNCS. 2010.

 (W3C 2010) W3C. RDF Store Benchmarking. Available online at

http://esw.w3.org/RdfStoreBenchmarking. 2010.

(W3C Implementations 2010) W3C - OWL Working Group, Implementations. Available online

at http://www.w3.org/2007/OWL/wiki/Implementations, 2010.

(Wikipedia) SPARQL at http://en.wikipedia.org/wiki/SPARQL

 Semantic data model at

http://en.wikipedia.org/wiki/Semantic_data_model

(Zhang, P. 2008). Digital Controller for Industrial Control. Industrial Control Technology,

William andrew Inc.: 429.

http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/Publications/Minack%202008.pdf
http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/Publications/Minack%202008.pdf
http://esw.w3.org/RdfStoreBenchmarking.%202010
http://en.wikipedia.org/wiki/SPARQL
http://en.wikipedia.org/wiki/Semantic_data_model

