
Document version: 1.1 Submission date: May, 27 2013

Enabling the business-based

Internet of Things and Services

(FP7 257852)

D5.2.3 Architecture for intelligence integration 3

Published by the ebbits Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 2 of 27 Submission date: May, 27 2013

Document control page

Document file: D5.2.3 Architecture for intelligence integration 3.docx

Document version: 1.1
Document owner: Ferry Pramudianto (FIT)

Work package: WP5 – Distributed and centralized intelligence
Task: T5.1 – Validation of platform and services

Deliverable type: R

Document status: approved by the document owner for internal review
 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Ferry Pramudianto 2013-1-15 Context Model Reference, Context
modeling tool architecture

0.2 Andreas Zimmermann 2013-1-15 Introduction to personalization

0.3 K. Furdik (IS) 2013-1-15 Conceptual representation of context in

IoT applications

1.0 Ferry Pramudianto 2013-2-28 Final version submitted to the European
Commission

1.1 Ferry Pramudianto 2013-5-27 Removed the not-directly-relevant

related work as requested by the
commission

Restructure chapter 5 for better
readability.

Checked and Fixed the figure references

Internal review history:

Reviewed by Date Summary of comments

P. Kostelnik (TUK) 2013-02-27 Approved with comments

K. Furdik (IS) 2013-02-27 Approved with comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 3 of 27 Submission date: May, 27 2013

Index:

1 Executive Summary ... 4

2 Introduction .. 5

 Purpose, context and scope of this deliverable .. 5
 Background ... 5

3 Open Requirements ... 6

4 User Context in ebbits ... 9

 Conceptual representation of context in IoT applications 9
 Semantic modeling for IoT in ebbits domain ... 10
 Conclusion ... 13

5 Ebbits Visual Context Modeling Tool .. 14

 The Development Tool .. 15
 The workflow of the prototyping tool ... 16
5.2.1 User Interface Design .. 17
 Context Monitoring Architecture .. 18
5.3.1 Architecture block of the context monitoring system. 20
5.3.2 Logical View of IoT Context Monitoring ... 21
5.3.3 Sequence Diagram .. 24
 Conclusion ... 26

References ... 27

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 4 of 27 Submission date: May, 27 2013

1 Executive Summary

This deliverable presents a continuation of D5.2.2 which discussed the architecture of the
context manager and self-* properties. In this report, we present the list of open requirements
that are relevant for WP5, as well as the requirements that are particularly being addressed
in this deliverable.
Next in Chapter 3, a reference context model for the internet of things, people, and services
is presented. This model can be extended by developers who are aiming at building
applications on top of ebbits platform. The reference model may also serve as a guide for
developers in deciding which parameters can be used to adapt the behavior of their systems.
Moreover, this deliverable also discusses the architecture for ebbits context modeling tool
which is designed to help developers building a prototype application rapidly. The tool is
designed as a model-driven graphical tool that takes advantage of a simplified domain-specific
language which is easy to learn and thus is capable to reduce the learning curve needed by
ebbits developers.
The tool will be implemented in the next deliverable “D5.4.3 Multi-sensory fusion and context
awareness prototypes” at M34.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 5 of 27 Submission date: May, 27 2013

2 Introduction

 Purpose, context and scope of this deliverable

This work is part of the Task 5.3 - Context modeling and Task T5.2 – Intelligent sensor
fusion services. In this context, the deliverable updates the architecture specification in
D5.2.2 Architecture for intelligence integration 2. The content of this deliverable is meant
to describe a reference context model as a framework and guide for developers that intend
to build context aware applications on top of ebbits.

Moreover this deliverable is intended to describe the architecture of the context aware tool
to support ebbits developers in developing intelligent applications. The architecture
presented in this deliverable includes the architecture for ebbits context modeling tool
which is designed to help developers building a prototype application rapidly. The tool is
designed as a model-driven graphical tool that takes advantage of a simplified domain-
specific language which is easy to learn and thus is capable to reduce the learning curve
needed by ebbits developers.

 Background

The ebbits platform is a cloud based platform that allows the “Internet of People, Things
and Services” (IoPTS) to be integrated into existing and new Enterprise systems thus
allowing firms and organizations to launch applications that rely on legacy data as well as
real-time information from the physical world.

The ebbits platform supports interoperable business applications with context-aware
processing of data separated in time and space, information and real-world events
(addressing tags, sensors and actuators as services), people and workflows (operator and
maintenance crews), process management using high-level business rules (energy and cost
performance criteria), end-to-end business processes (traceability, lifecycle management),
or comprehensive consumer demands (product authentication, trustworthy information, and
knowledge sharing).

It will provide semantic resolution to the Internet of Things and hence present a new bridge
between backend enterprise applications, people, services and the physical world, using
information generated by tags, sensors, and other devices and performing actions on the
real world. The platform will be based on a Service-oriented Architecture (SoA), transforming
every device into a service. The SoA will allow these services to semantically discover,
configure, and communicate with each other.

The ebbits platform will be demonstrated in end-to-end business applications featuring
connectivity to and online monitoring of a product during its entire lifecycle, i.e. from the
early manufacturing stage to its end-of-life.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 6 of 27 Submission date: May, 27 2013

3 Open Requirements

Requirements and architecture influence each other. Requirements are taken as an input for
the architectural design process since they frame the architectural problem and explicitly
represent the stakeholders’ needs and desires. On the other hand, during the architecture
design the system developers have to take into considerations what is possible and look at
the requirements from a risk/cost perspective.

In order to discuss the state of play and visions for WP5 with the users, several developer
workshops were organized at FIT. These workshops provided an environment for ebbits
developers and user partners to discuss ideas and questions, and consequently to come to
a common understanding of visions and problems to be resolved for the context
management in ebbits.

The aim of these procedures was the systematic formalization of all relevant stakeholder
requirements for the context management functionality, mainly based on the results of two
workshops held in FIT in June 2012. Input to the scenarios and the initial requirement
elicitation phase also came from the technical meetings, DoW, and deliverables D2.5.1,
D2.5.2, and D2.5.3 Prototype application specifications. The process of gathering,
maintaining, updating, and fulfilling requirements, which was elaborated within WP2, has
been applied for the intelligence integration architecture design and functional components
development as well.

After extraction and elicitation of requirements, these were described and organized in a tool
named JIRA1. JIRA is a web based bug tracker that allows implementing and tracking the
workflow of the Volere schema2. All partners in ebbits have been given access to JIRA with
a unique username and password so that they can create requirements. This tool is
necessary to ensure that all important details and procedures in the Volere Schema are
properly adhered.

The extraction of requirements was accomplished in accordance with the scenarios
presented in (D2.1 Scenario for usage of ebbits platform (ebbits 2011)). The requirements,
together with attributes such as summary description, priority, fit criterion and current status
of implementation are listed in the following Table 1. The value in the first "Key" field is used
as an ID for uniquely identify the requirement on the JIRA Platform.

Table 1. List of all open requirements for the WP5.

Key Summary Priority Fit Criterion Status

EBBITS-
210

System should provide
location tracking of context
entities

Blocker Location is available as a generic
context attribute (EBBITS-330), and
applications can specify which
sensors to use for location tracking
(and choose among different standard
tracking methods)

Planned
for M36
Demo

EBBITS-
213

System should show Energy
Cost for different granularity of
production processes

Blocker Each automated process, machine is
able to show energy cost

Planned
for M36
Demo

EBBITS-
398

Java based object oriented
context modeling

Blocker developers can define context model
in java

Planned
for M36
Demo

EBBITS-
328

Sensor fusion algorithms must
be realized as a decoupled
component.

Major Sensor fusion algorithms are
available as services or libraries to
the entire platform.

Planned
for M36
Demo

1 www.atlassian.com/JIRA
2 http://www.volere.co.uk/template.htm

https://jira.fit.fraunhofer.de/jira/browse/EBBITS-210
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-210
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-213
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-213
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-398
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-398
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-328
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-328

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 7 of 27 Submission date: May, 27 2013

Key Summary Priority Fit Criterion Status

EBBITS-
200

Distributed data can be
referenced in data fusion and
context management

Major References to remote data can be
defined and the queries can be
executed.

Planned
for M48
Demo

EBBITS-
326

The system should
compensate deviations of
incoming data.

Major System provides configureable filter
to exclude outliers e.g.: define upper
& lower threshold

Planned
for M36
Demo

EBBITS-
246

Dynamically loaded libraries
must undergo a security check
before their usage

Major Dynamically loaded libraries must
contain a valid signature in order to
prevent security breaches in the
system.

Planned
for M36
Demo

EBBITS-
196

Diagnostic component to
detect and correct
malfunctions

Major Malfunctions or strange behaviour of
machinery are recognized early
enough.

Planned
for M36
Demo

EBBITS-
332

Context management should
be able to process a large
number of sensor events

Major Context management is able to
process at least 500 events / second.

Planned
for M36
Demo

EBBITS-
309

ebbits platform should have a
publish-subscribe system

Major Directory of alerts/events. The ebbits
system includes one or more
directories of alerts or events,
including for each item the list of
subscribers.

Planned
for M36
Demo

EBBITS-
223

The system provides access
to aggregated/selected
information through filters or
fusion

Major Processes can specify that
information should be fused or
filtered, and they only get the
requested information

Planned
for M36
Demo

EBBITS-
381

Self-* manager needs to
monitor the connection to the
physical devices

Major Self-* manager implementation is
available that can handle unstable
device connection.

Planned
for M36
Demo

EBBITS-
382

Device proxies can shut off a
physical device from the
network if it causes a lot of
problem

Major Shut-off functionality available, logic
to detect problems designed.

Planned
for M36
Demo

EBBITS-
384

Device proxies reset devices
upon problems when no other
fix is defined by the developer

Major Shut-off functionality available, logic
to detect problems designed.

Planned
for M36
Demo

EBBITS-
383

Device proxies adjust event
publishing frequency
according to the network
bandwidth

Major Control management services
available.

Planned
for M36
Demo

EBBITS-
385

Device Proxies need a
standardized interface that
provides control management
services for event publication

Major Device proxy interface defined Planned
for M36
Demo

EBBITS-
397

Prototyping tools for context
modeling

Major model driven tool for modeling context
exists

Planned
for M36
Demo

EBBITS-
224

Early maintenance notification
when needed

Minor Show 3-5 early maintenance use
cases.
Users/technicians are notified if
robots need maintenance

Planned
for M48
Demo

https://jira.fit.fraunhofer.de/jira/browse/EBBITS-200
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-200
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-326
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-326
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-246
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-246
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-196
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-196
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-332
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-332
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-309
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-309
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-223
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-223
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-381
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-381
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-382
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-382
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-384
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-384
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-383
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-383
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-385
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-385
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-397
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-397
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-224
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-224

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 8 of 27 Submission date: May, 27 2013

Key Summary Priority Fit Criterion Status

EBBITS-
333

Libraries must only be
accessible only for permitted
applications.

Minor The dynamic loading of libraries must
be restricted through policies.

Planned
for M48
Demo

EBBITS-
242

The system should be able to
take decision based on
uncertain facts

Minor The system supports at least two
different soft-logic algorithms. e.g.:
Fuzzy logic & probabilistic approach

Planned
for M48
Demo

EBBITS-
399

Reference context model for
Internet of things, people and
services

Blocker developers could extend or modify the
reference context model if he's
building his application

Planned
for M36
Demo

After we conducted the feasibility analysis and the significance of innovations for ebbits, we
concluded that at the moment we should focus on these requirements:

 EBBITS-399 Reference context model for Internet of things, people and services

 EBBITS-309 ebbits platform should have a publish-subscribe system

 EBBITS-223 The system provides access to aggregated/selected information through
filters or fusion

 EBBITS-397 Prototyping tools for context modeling

 EBBITS-398 Java based object oriented context modeling

 EBBITS-328 Sensor fusion algorithms must be realized as a decoupled component.

https://jira.fit.fraunhofer.de/jira/browse/EBBITS-333
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-333
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-242
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-242
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-399
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-399
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-309
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-223
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-397
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-398
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-328

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 9 of 27 Submission date: May, 27 2013

4 User Context in ebbits

 Conceptual representation of context in IoT applications

The context for adaptive applications has been captured and modeled in the last decade
under the paradigm of ubiquitous or pervasive computing (Satyanarayanan, 2001), which
corresponds to the Internet of Things, People, and Services notion in terms of adaptable
interactions between people and devices in a computer-enabled environment (Poslad,
2009). The context-aware behavior in such an environment is based on a context
information and related reasoning of spatial, temporal, or other similar quantitative or
qualitative characteristics of actors interacting within the IoT system. To overcome the
heterogeneity of various application-specific definitions and consequent models of the
context information, (Topcu, 2011) proposes a generic classification of different context
types presented in Figure 1.

Figure 1. The topology of context (Topcu, 2011)

A detailed survey and analysis of context modeling approaches, techniques, context
representations, and frameworks can be found, for example, in (Bettini et al, 2010).

The most recent proposal of the conceptual representation of context, designed specifically
for current IoT systems, was issued by the IoT-A consortium (Nettsträter et al, 2012). The
domain model of the IoT context, which captures the main concepts at a high level of
abstraction, is presented in Figure 2. The User - Physical Entity interaction is the core
relationship in this model, where both sides of the predicate are further expanded into
generic classes of physical devices (blue boxes), software artifacts, services, and resources
(green boxes) or human users (yellow box). The IoT-A model is intentionally quite simple
and general, capturing all the most important concepts and relations for representing any
context-relevant aspects that may be applied in IoT systems of all types. From this
perspective, the IoT-A domain model provides a reference semantic architecture that can
be reused and instantiated to obtain a custom representation of the context in ebbits, as it
is described in the following section.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 10 of 27 Submission date: May, 27 2013

Figure 2. The IoT-A reference architecture - the IoT domain model

 Semantic modeling for IoT in ebbits domain

The semantic modeling in ebbits extends the Internet of Things reference architecture
proposed by the (IoT-A consortium 2012). We extend this model by introducing the context
of the human users as people is aimed to be the key differentiator of ebbits.

As depicted in Figure 3, the reference context model above shows relationships that are
often needed for developing IoT applications (showed in blue). The relation to the people
(showed in green) is designed for supporting people in performing their work.

The following description explains how the main concepts depicted in the Figure 3 should
be used in an application:

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 11 of 27 Submission date: May, 27 2013

Thing

EnablerDevice

Service

PeopleLocation

Sensor ID-Tag Actuator

PhysicalEntity

Virtual Entity

Task

Information
Provider

Information

hasSome

provides

contains

has
Capability

Adaptation

perform

Classification

has

requiresSome

Automation

hasSome

Offers

RepresentedBy

RepresentedBy

enabledBy

locatedAt

locatedAt

locatedAt

contains

Professional
Background

has

Display

DisplayedAt

hasSome

Priority has

Preferences

has

Roles

has

Figure 3. Reference context model for IoT

Thing
Thing in the IoT applications refers to a concept of smart objects which a user can interact
with. Being part of the IoT, an entity must be addressable through some identification and
provide at least a service to get its descriptions and other context parameter such as its
location, services, and its quality parameters.

From the user perspective each thing is an integrated unit although it may be composed of
several independent components that are explained in the following sections.

Physical Entity
Physical entities are tangible objects surrounding us. Physical entities can range from
integrated electronic or a mechatronic devices which composed of software and hardware
components offering services such as mobile phones, automation robots, embedded
systems. Thing could also be a non-electronic device that must be represented by a
composition of virtual entity or software objects and enabler devices such as sensor,
actuators, and ID-tags.

Enabler Devices
Enabler devices are devices needed to enable physical entities to be part of the internet of
things. The function of the enabler devices can be categorized to:

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 12 of 27 Submission date: May, 27 2013

 Provide unique identifications.

 Provide the context of things.

 Provide means for adaptation.

 Provide means of communications.

Tags such as RFIDs and barcodes have been used to provide identification for products,
while network addressing has been used to identify electronic devices with communication
module integrated.

Sensors are used to provide the context parameter of things such as temperature and light
sensors, GPS for location, and image processing. User input is also used to identify some
parameters that cannot be reliably detected with sensors.

Actuators on the other hand allow adaptation to the context parameter of the things to be
executed.

Virtual Entity
Virtual entity refers to software instances that maybe a representation of physical objects
or it may also be completely virtual objects that do not represent any physical objects. In
ebbits case, a complete virtual entity may represent a legacy system and business
systems.

Virtual entity enables interactions to physical devices and software modules being
expressed in software instructions / programming language which is encapsulated as
services.

It also provides a standardized communication protocol that allows interoperability among
the internet of things. For instance, in ebbits, LinkSmart proxies provide a web service
communication to solve syntactic interoperability among heterogeneous protocols.

Services
Services represent functionalities that are provided by smart things such as retrieving its
information, perform actuations. Services are accessible by sending instructions to its
application programming interface (API). The services encapsulate the access to hardware
and software components that form the smart “Thing”. Nowadays there exist some efforts
to use web technologies for standardizing the access to these services. E.g.: device profile
for web service (DPWS), Constrained Application Protocol (CoAP). There are several
proposals to standardize context information of web services e.g.: OWL-S, WSMO.
However for ebbits use case, we try to find a balance between modelling and the
usefulness of the context information. Based on the requirements, the capabilities of
services are the only important context information for searching and discovering services.

People, background, and preferences
Ebbits aims at putting people in the center of the platform. People interact with internet of
things in their work not only to retrieve information, but also to perform some adaptation
to the environment. People also have some preferences that may influence the way they
work, and therefore also affecting their ability to consume and perceive the information.
The information shown to the user should be adapted according to their roles and tasks in
the organization. This approach could help user to gain situational awareness without
being overwhelmed by the amount of information.

The ability of the users to consume information depends on their professional background
such as educations and experiences. Moreover they also have personal preferences how
the information should be presented. Considering these parameters may help users
understanding the information presented to them.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 13 of 27 Submission date: May, 27 2013

On the other hand, tailoring the presentation of the information according to the different
context of the users may require a large amount of development efforts therefore the
application developers must find the balance of customizing the applications to the benefit
that the users would gain.

Tasks, Roles, and Priorities
Since the goal of ebbits is to establish internet of thing particularly for business
environment, user tasks should be treated as the first class citizen that influences how the
system works. Many systems adapt the presentation of information depending on the user
roles. However these systems could be enhanced further by adapting the information
based on the context of the tasks. This is particularly useful in a setting like in the
manufacturing use cases where a massive amount of data come from the shop floor. The
data is transformed into various reports that can be shown to the users depending on his
tasks. E.g.: technician that is looking for an error need to see the detail of abnormal data
from each devices, while a line supervisor may only be interested in the total throughput
of the line.

Tasks may be executed by people as well as automated systems. When they use the same
resources, conflict may happen and therefore prioritization of these tasks needs to be had.

Display and user location
The increase of post desktop devices with many form factors e.g.: phone, tablet,
convertible or phablet open different possibilities for presenting the information in such a
way that is optimal for the screen real estate. On a small mobile phones screen the user
may prefer to have a simple list of updates, while in a bigger screen such as tablet the
users may be able to see the more information.

User locations and which device the user is currently working with is an important factor
that has not yet been addressed by many systems. Location may be used to infer several
situations such as whether the users is accessing information with a public network that
needs to be secured, or the users have the bandwidth to download all information. These
considerations can be derived from the location of the users with the combination of other
inputs in order to increase the certainty of the inference

 Conclusion

In this section a context model reference that can be used by developers to develop smart
IoT applications that consider the context of the users. There are several approaches for
modeling user context depending on the focus of the application domain. Several
approaches claimed to provide a standard ontology that can be reused for building
applications for ubiquitous computing (Bettini et al, 2010). These approaches however
have a lack of support work activities as envisioned in ebbits.

We have presented an extension to IoT-A model to support ebbits scenarios that involved
interaction between IoT and the users in performing their work activities. This context
model can be extended and combined with application specific domain model.

Developers may adjust the application behaviors according to the context of the users to
achieve personalization, however modeling different behaviors may require a lot of efforts
and increase the complexity of the system. The developers must be able to find the right
balance between the detail of personalization and their benefits for the users as well as for
the developers.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 14 of 27 Submission date: May, 27 2013

5 Ebbits Visual Context Modeling Tool

Ebbits aims at providing developers with Model Driven Development (MDD) tool that
simplifies IoT application development by exploiting the Internet of Things model
described in the section 4.2. The envisioned tool should allow novice developers to rapidly
developed context monitoring application using ebbits.

To support this goal, we choose visual modeling tool that could define the relationships
among sensors, actuators, and their semantics in terms of application domain objects. The
tool will then generate the necessary software artifacts that represent the domain objects
that can be access programmatically. This way, developers only need to deal with domain
objects as they perceive the application domains without having to know the technology
details of the sensors and actuators. The sensor and actuator drivers will be added and as
plugins to the tool, which is going to be continuously maintained by the LinkSmart open
source community.

MDD focuses to develop and to refine the model of a specific domain that provides user
defined standard vocabulary that can be used in the development (Gronback, 2009). Using
MDD for implementing a complex system could have the possibility to reduce time and cost
of production(Bordin, Panunzio, & Puri, 2008). In MDD, a modeling language is used to
create an abstract model of the system to achieve a better overview of the whole system.

There are several accepted standard modeling languages for building IT systems such as
Unified Modeling Language (UML), Data Flow Diagram (DFD), Fundamental Modeling
Concept (FMC) and System Modeling Language (SysML). SysML is a general-purpose
language for system engineering applications. It supports defining the requirement,
analysis, design, verification, and validation of a wide range of complex systems. These
systems may include notations for describing hardware, software, information, processes,
personnel, and facilities. It reuses a subset of UML 2 and provides additional extensions
needed to address the requirements for system engineering (Object Management Group,
2010). FMC is a universal notation originating from existing notation standard. It clearly
separates conceptual structures from the implementation structure to focus on human
comprehensions of complex systems on a higher levels of abstraction compared to UML.
FMC enables group of people to share a common understanding of a system’s goal and
structure by providing the concepts to create and visualize models without going in depth
(Knöpfel, 2007).

Figure 4. FMC fills the gap between UML and Requirements.

Alternatively, a Domain Specific Language (DSL) can be used in MDD. DSL is designed
specifically for the intended tasks (Gronback, 2009). Gronback also claims that the cost of
learning a complex language might be too costly and the effort of standardizing modeling
language for general use cases will likely fails due to different requirements of the tasks,
and the human nature to express their own creativity (“Not invented here syndrome”).

After performing observation and interviews to our users, using a set of standard modeling
language such as UML is too complex to support the intended tasks, we decided to
implement a simplified DSL that consists a subset of UML and the needed extensions for
modeling the association among devices and the virtual objects.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 15 of 27 Submission date: May, 27 2013

 The Development Tool

We have gathered several developers and student assistant in Fraunhofer FIT to discuss
the needed requirements for the context modeling tool. Based on the discussion with the
users, we concluded that the users need to have a system that allows them to associate
the sensors and actuators with the context parameters belong to the entities in the
domain. They would like simply to deal with simple plain java objects to access the entities
and their context parameters once the mapping between sensors and the objects has been
defined. Moreover, they would like to be able to pre-process sensor data by applying
fusion, filtering of the sensor data.

Figure 5 Use case of the prototyping tool

The following description explains the use case of the context modeling tool:

UC1. Create Input Model and Add Input Connection

The user is able to create an input model as an abstraction of the input connection e.g.
connection to sensors, actuators, or other input software, or devices.

UC2. Create Processing Model and Add Filtering and Fusion

The user is able to create processing model as an abstraction of a processing filtering or
fusion data.

UC3. Create Output Model and Add Output Connection

The user is able to create an output model as an abstraction of the output connection e.g.
output connection to Graphical User Interface (GUI), console interface or database.

UC4. Create Association of Input, Processing, Domain and Output Model

The user is able to create an association from the input to processing, from processing to
the domain model, and from the domain model to the output.

UC5. Generate diagram as Java Project

The user is able to generate diagram into a Java project that can be use as prototyping
software of the system and extend to a full fledge of software.

UC6. Save and Open File Diagram

The user is able to save the prototyping diagram for later use or as an archive and open it
again to make changes.

User

Prototyping Tool

Create
Project

Create
Domain
Model

Create Input
Model

Add Input
Connection

Open File
Diagram

Create
Output
Model

Add Output
Connection

Create
Processing

Model Add Fusion

Add Filtering

Save File
Diagram

Create
Association

Model

Generate To
Java Project

Create File
Diagram

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 16 of 27 Submission date: May, 27 2013

 The workflow of the prototyping tool

F
ig

u
re

 6
. W

o
rk

flo
w

 o
f th

e
 to

o
l

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 17 of 27 Submission date: May, 27 2013

The workflow of the system is started with creating a new project on the Eclipse
development tool (Figure 6) where the user can enter the name of the project. Next, the
user can create a new prototyping diagram inside that project and enter the filename of it.
Then, the user may start designing the domain model of the context aware system. When
designing the model, the user is able to add several components such as Containers for
the Input, Process, Domain model, and the Output components as well as the
corresponding components themselves. Each component container will contain specific
component e.g. Input container component contains Input component. This container is
design to avoid clutter of the diagram when modeling a large system.

The Input, Process, and Output components have several implementation components that
the user can choose from e.g. Input component has an implementation of connection to
the Arduino board and Plugwise, the Output component has an implementation of
displaying the information to graphical user interface (GUI), Process component might
have implementations such as moving filter, average, min, max.

The Domain model component does not have any implementation component, but it has
the attribute component that defines what kind of data type and name that a Domain
object will contain e.g. Domain model of room would have the name of attribute
temperature, which type is double.

After the user adds all required components the user needs to associate the components
as depicted in Figure 7. The association would be Input to Process component, Process to
Attribute component, and Domain model to Output component. After all necessary
association finished the user may start to generate the java code based on the diagram
into prototyping of monitoring system. Then, the user can start monitoring of the system
by selecting start menu, or stop the system by selecting the stop menu.

5.2.1 User Interface Design

Based on the use cases, a design of a context modeling tool has been created. The tool
consists of three main parts: An editor view in the middle that allows developers to
associate the entities in the domain with the context providers that deliver the context
values. The Input box can be extended to include LinkSmart proxies e.g OPC, Arduino,
sensors, and PLC. The data from the context providers in the input box as described in the
Figure 7 must go through process layer where the data can be fused, aggregated, filtered
before it is assigned to the context attribute of an entity. The developers are able to
extend the tool by adding more of fusion algorithms. The process box may contain several
processing boxes containing algorithms to fuse sensor streams. Each of the processing
box is then associated with context property of an entity.

The tool should be able to generate Java source code create the necessary artifacts to
start a development project (e.g.: Eclipse project). The source code generator should be
extendible to generate different programming languages such as C, C++, Python,
Objective C or Perl. However, in this period, in WP5, we will initially focus on generating a
Java Project. The java project will contain all the necessary artifacts needed to start the
development e.g.: Java source codes, libraries, and eclipse project configurations that are
needed by eclipse.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 18 of 27 Submission date: May, 27 2013

Figure 7 The mockup GUI of the prototyping tool

As shown in the mockup of GUI, the tool will have several views, which are Project View,
Editor View, Palette View, and Properties View (Figure 7). It will have a button in the
toolbar to generate the necessary artifacts such as the code of the real-time monitoring
system. Project View can contain project of the user that can have many prototyping
diagrams and the generated real-time monitoring system as a java project. Palette view
contains several blocks and links of the model diagram that can be put in the Editor View,
and it is arranged using tabular depending upon the type of the model. Editor View
visualizes the model and the link of the block diagram that is put from the Palette View. In
this view, the user can design their system using graphical programming or MDD according
to their project requirements. In the Properties, View users can modify the properties of6
the blocks of the model diagram. Using this view the generated system will have real
implementation of the system for the input, processing, and the output. Since the
prototyping tool is intended as an Eclipse Plugin Project, it might look like as an Eclipse
Development Tool.

 Context Monitoring Architecture

The context monitoring system is meant to be generated by the tool designed in the
previous section.

Requirements addressed:

 EBBITS-309 ebbits platform should have a publish-subscribe system

 EBBITS-223 The system provides access to aggregated/selected information through filters or

fusion

 EBBITS-397 Prototyping tools for context modeling

 EBBITS-398 Java based object oriented context modeling

 EBBITS-328 Sensor fusion algorithms must be realized as a decoupled component.

Based on the developer workshops that was held at Fraunhofer FIT and the WP5
requirements, we have defined the use cases for monitoring the context of the virtual
objects defined by the developers.

https://jira.fit.fraunhofer.de/jira/browse/EBBITS-309
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-223
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-397
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-398
https://jira.fit.fraunhofer.de/jira/browse/EBBITS-328

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 19 of 27 Submission date: May, 27 2013

Figure 8 Use case of monitoring context of the virtual objects

UC1. Start Monitor

The user is able to start monitor of the system.

UC2. Stop Monitor

The user is able to stop monitor of the system.

UC3.1 Retrieve data from the sensor

The system is able to retrieve data input from the sensor such as retrieving data from
sensors directly, using serial or communication port, or using middleware.

UC3.2 Retrieve data from middleware

The system is able to retrieve data input from the used of middleware such as LinkSmart
or OPC3.

UC4. Processing of input data

The system is able to apply pre-processing to the sensor data e.g.: filter input data
according to minimum or maximum of specified value, fuse of sensor data to increase its
confidence as well as inferring new information. This data processing will deal with a low
level sensor filtering to reduce network traffic. A more intelligent sensor processing will be
done by the work in WP7, specifically by the Event Processing Agent component.

UC. Transfer data to the output

The system is able to transfer data to the output e.g. store data to the database or display
to GUI or Console Interface.

3 http://www.opcfoundation.org/

Monitoring System

Retrieve data
from Input

Transfer to
Output

Process
Processing

Process for
Fusion

Process for
Filtering

Retrieve data
from

Middleware

Retrieve data
from Sensors

Store to
database

<uses>

<uses>

<uses>

Sensor

Middle
ware

Database

<uses>

<uses>

Display to
GUI

<uses>

User
Start

Monitor

Stop
Monitor

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 20 of 27 Submission date: May, 27 2013

5.3.1 Architecture block of the context monitoring system.

Figure 9 Software architecture for monitoring context of IoT

Our design approach keeps the architecture simple and making it familiar to the developers
in order to reduce the learning curve needed by novice developers. The general
architecture is divided into four components of input, processing, context model, and
output component (depicted in Figure 9). In the input component, there are two
categories of inputs that we could use such as on-line feeds and offline feeds. On-line
feeds may contain hardware drivers such as sensors, actuators and PLCs (Programmable
Logic Controller) as well as software proxies such as web-services that provide online data
streams. In the offline feeds the input can contain artifacts that access historical data such
as databases, log files, business process definition, and formatted files for instance CSV
(Comma Separated Values). This component can be abstracted using the existing
LinkSmart middleware drivers.

In the Pre-Processing component, several basic processing modules will be available as
plugins. The basic plugins that will be provided includes data filtering, averaging, high-pass
/ low pass filter, or even filter for interpolating data (e.g.: Kalman Filter). Fusion module
can be used e.g. to fuse data from different sensors in order to augment the confidence of
the data as well as to derive information that is not possible to be detected by a type of
sensor.

The context model component contains the virtual objects and their associations to each
other as well as the associations to the atomic devices such as sensors and actuators
based on the mapping defined by the developers. Once the mapping is done using the
provided tool, this model will be generated in a native programming language.

The virtual objects in the context model may have their own properties such as position,
temperature, intensity of the light, energy consumption. The data stream from the input
component such as sensors will automatically update the context values of the entities
after it has gone through a pre-processing modules. This simplifies further the application
development since from this point on, the developers only need to deal with the virtual
objects through plain java objects (POJO). For example, when the temperature properties

Input

Offline feeds

Business Process

Definition, Log
Data, Database.

Online feeds

Sensor, User Input,
Event-notification

Pre-Processing

Filter, Smoothing, Fusion

Context Model

Logical view, Domain objects, Pedigree,
Relationships.

Output

Logs Visualizations APIs

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 21 of 27 Submission date: May, 27 2013

of the domain object, or room is mapped to sensor temperature, the properties will
automatically be updated accordingly. The developers can simply access the properties of
those domain objects without worrying where the value of the properties comes from.

The output component may contains components that visualize the real time values of the
virtual objects, components that log the values into e.g. database, and API components
that provides access to the virtual objects for the external applications through e.g. a web
service.

The flow of the data initially comes from the input component, which is then processed in
the processing component. After the data that come from the input gets processed, it is
stored in the properties of the domain objects. The output component will be responsible
to monitor the data for the properties of the domain objects and display them for real-time
monitoring applications or dump them to a file or a database.

The processing component can handle the data from several input components. The
output component can also handle many attributes of the domain model. The domain
objects can contain other domain objects e.g. a room is inside a building, and a light is
inside the room.

5.3.2 Logical View of IoT Context Monitoring

Figure 10 shows the class diagram of the system that monitors the context of virtual
objects. The class diagram is a meta-model that will be used for defining the structure of
the DSL to specify the domain model. The flow of the system will be the same as the
concept from input into processing, from processing into the attribute of the domain model
and from attribute of the domain model into the output component.

The classes are abstractions that specify the common structure and behaviors of a set of
objects (Bruegge & Dutoit, 2004). It is divided into five layers and contains several classes.
The layers and classes are described below:

First Layer (red rectangle)

This layer concerns with the user interface such as GUI for controlling and monitoring
system. It contains only one class, which is UIController.

UIController: It has several methods such as createControl for initializing elements of the
UI controller, startMonitor for starting the monitoring, and stopMonitor for stopping the
monitoring process.

Second Layer (light blue rectangle)

This layer concerns as a main module of the monitoring system. It also contains only one
class, which is the Monitoring class.

Monitoring: It has methods, which are the “setup” method for setting up the entire object's
creation and objects mapping, “startMonitor” for starting the monitoring process, and
“stopMonitor” for stopping the monitoring process.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 22 of 27 Submission date: May, 27 2013

Figure 10 Class Diagram of monitoring system

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 23 of 27 Submission date: May, 27 2013

Third Layer (dark blue rectangles)

This layer deals with creating all objects from the classes in the green layer. The classes are:

 InputFactory: deals with creating all the objects for the Input class.

 InputConnectionFactory: deals with creating all the objects for the InputConnection
class.

 ProcessingFactory: deals with creating all the objects for the Processing class.

 ProcessingModuleFactory: deals with creating all the objects for the ProcessingModule
class.

 DomainFactory: deals with the creation all the objects for domainModel class.

 OutputFactory: deals with the creation all the objects for output class.

 OutputConnectionFactory: deals with the creation all the objects for
outputConnection.

Fourth Layer (green rectangles)

This layer concerns all the classes that are related with all components of the logical view of
the architecture and InputConnection class. The classes are:

Input: This class concern with the input data from InputConnection class to the Processing
class. It is designed using an MCV pattern (Model-View-Controller) and designed as an
observer in the MVC pattern that will get updated with the data from observable or
InputConnection class or model in MVC pattern. The controller contains a middleware
component or native driver of a particular input.

Processing: this class is designed using a separated thread for every Processing task, since
each of the Processing task may use a Processing module such as filtering and fusion modules
that can take some time to process the data. This way, long processes do not cause a
bottleneck in the system. Each of the Processing task would have a task that execute a
sequence of Processing modules. After the data from the input module is processed, the
Processing class will update the attribute or property of the objects according to the
relationships among objects and sensors assigned before in the Monitoring class.

DomainModel: This class represents the domain objects in the application domain and their
relationships. Each DomainModel object can have several attributes. This class stores the data
that come from the Input class after it is pre-processed in the Processing class.

Output: This class deals with the output of the system. Each output is designed as a thread.
This class will monitor the objects in the DomainModel and then pass the data into any
instance of the OutputConnection class such as GUI.

Fifth Layer (yellow rectangles)

This layer concerns with the implementation that is closer to the particular middleware or
specific function. This Layer is an extension for all components in the fourth layer. The classes
are:

InputConnection: This class extends the input component for any implementation of a specific
middleware or a driver of the input source. The developers can extend this class to use for a
different kind of devices. It is designed as a model in MCV pattern that will get an update of
the data from the controller, which is the middleware or the driver of a specific input source.
Using the InputConnection class, developers can extend the system to include a particular
input source that can be incorporated using a middleware or driver such as OPC, LinkSmart,
communication port (OS driver.

ProcessingModule: This class extends the processing component and can be designed for
filtering or fusion processing. The user can implement different filtering and fusion processing
to according to the functionality of the system. The developers only need to implement
processing interface and “apply” method according to their own need. The Processing module
will process all data from the input, which are passed by the Processing class.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 24 of 27 Submission date: May, 27 2013

OutputConnection: This class can be extended to a specific implementation of the output such
as a report interface or a database.

5.3.3 Sequence Diagram

Sequenced diagram is used to describe the dynamic activities of the system and visualize the
communication between the objects (Bruegge & Dutoit, 2004) of the virtual objects
monitoring system. There are two possibilities of having the data into a system. First is by
pulling the data every interval of time to the sensors (Figure 11). The second technique is the
push, for which the sensors itself can send the data to the system using an event-driven
paradigm (Figure 12).

Figure 11 the pull version of the sequence diagram

First when the user starts the system, the Monitor object creates the necessary objects
defined in the Domain Model, Input, Processing, and Output objects. After it has created the
objects, the system starts monitoring the context of the virtual objects and sends the message
to the Monitor object. Then it sends out the setup message which initializes the system. For
example, the Input object will setup the connection to the specified. For the pull version
creates a loop that retrieves the data from the sensor according to a specified interval.

In the meantime, The Processing object runs a loop to get the new data from the Input
according to the specified interval. The Processing object calls a user-defined method that is
responsible for doing the pre-processing such as filtering or sensor fusion.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 25 of 27 Submission date: May, 27 2013

The Processing object has been designed with the pull version that pulls the sensor values
every interval of time. Since the processing can be defined by the developers, there is no way
of knowing how long the process will take. For this reason, separate thread should be used for
each processing module and synchronization of the threads should be taken care of. When the
Processing object and the Output object are created together and running in separated
thread. When it has finished processing the input data, it will set the attributes of the virtual
objects with the pre-processed data. The Output object will parse the pre-processed data by
accessing the virtual objects. The Output objects observe the data belongs to the attribute of
the virtual objects in the domain model and then transfers the data to the specified output
such as a database or GUI.

The monitoring stops when the user sends a message to stop it. The Monitoring object will
subsequently send a “cleanup” message to all the objects that have already initialized, next
stop the processing threads, and disconnect from the sensor, later it will destroy all the
objects when the user exits the system.

Figure 12 the push version of the sequence diagram

The push version follows a publish-subscribe pattern. Whenever the data is available, the
Input object will push the data from the sensors into the processing, then to the virtual
objects, and then the output component.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 26 of 27 Submission date: May, 27 2013

 Conclusion

This section presents the architecture of the visual context modeling tool and the architecture
of the code that should be generated to monitor the context of the virtual objects defined by
the users. The implementation of this architecture will be reported in the next prototype
deliverable.

ebbits D5.2.3 Architecture for intelligence integration 3

Document version: 1.1 Page 27 of 27 Submission date: May, 27 2013

References

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,
Riboni, D. (2008). A Survey of Context Modelling and Reasoning

Techniques. Journal of Pervasive and Mobile Computing, Volume 6
Issue 2, Elsevier, April 2010, pp. 161-180.

Bordin, M., Panunzio, M., & Puri, S. (2008). Rapid Model-Driven Prototyping and
Verification of High-Integrity Real-Time Systems, 491-492.

Bruegge, B., & Dutoit, A. H. (2004). Object-Oriented Software Engineering - Using UML,

Patterns and Java.

ebbits consortium. (2011). D2.1 Scenarios for usage of the ebbits platform.

Gronback, R. C. (2009). Eclipse Modeling Project A Domain-Specific Language (DSL)
Toolkit.

IoT-A Consortium. (2012). D1.4 Converged architectural reference model for the IoT v2.0

Knöpfel, A. (2007). FMC Quick Introduction.

Nettsträter, A: Internet of Things - Architecture (IoT-A, 257521) (2012). Deliverable
D1.3 - Updated reference model for IoT v1.5. IoT-A consortium,

2012.

Object Management Group. (2010). OMG Systems Modeling Language (OMG SysML TM).

Poslad, S.: Ubiquitous Computing. (2009). Smart Devices, Environments and

Interactions, 1st ed. John Wiley & Sons, Mar. 2009.

Satyanarayanan, M. (2001): Pervasive computing: vision and challenges. Personal

Communications, IEEE, vol. 8, no. 4, pp. 10 -17, Aug 2001.

Topcu, F. (2011). Context Modeling and Reasoning Techniques, SNET Seminar in the ST,

2011.

