
Document version: 1.1  Submission date: 2014-03-05 

 
 
 
 
 
 

 
Enabling the business-based  

Internet of Things and Services 
 

(FP7 257852) 
 
 

D2.8.3 Change request and re-engineering report 3 
 

 

Published by the ebbits Consortium  

 

Dissemination Level: Public 

  
 

Project co-funded by the European Commission within the 7th Framework Programme 
Objective ICT-2009.1.3: Internet of Things and Enterprise environments 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 2 of 25 Submission date: 2014-03-05 

Document control page 

Document file: D2 8 3 Change request and re-engineering report 3 V1.0.doc 
Document version: 1.1 
Document owner: L. Christiansen (IN-JET) 
 

Work package: WP2 – Requirements engineering and validation 

Task: T2.3 – Evolutionary requirements refinement 
Deliverable type: R 

 

Document status:   approved by the document owner for internal review 
   approved for submission to the EC 

 
 
Document history: 

 
Version Author(s) Date Summary of changes made 

0.1 Lasse Christiansen (IN-JET) 2013-08-09 ToC 
0.2 Yves Martin (SAP AG) 2013-09-06 WP6 sections 
0.3 Ferry Pramudianto (FIT) 2013-09-17  
0.4 Jan Hreno (TUC) 2013-09-20  
0.5 Paolo Brizzi (ISMB) 2013-09-20  
0.6 Matts Ahlsén (CNET) 2013-09-24 WP7 additions 
0.7 Lasse Christiansen (In-JET) 2013-10-17 Revision after review 

    
1.0 Lasse Christiansen (IN-JET) 2013-10-24 Final version submitted to the European 

Commission 
1.1 Lasse Christiansen (IN-JET) 2014-03-05 Corrected typo errors after comments 

from the Commission 
 
 
 
Internal review history: 

 
Reviewed by Date Summary of comments 

P. Rosengren (CNET) 2013-10-17 Approved with comments. 
C. Pastrone (ISMB) 2013-10-02 Approved with comments. 
 

Legal Notice 

The information in this document is subject to change without notice. 

The Members of the ebbits Consortium make no warranty of any kind with regard to this document, 

including, but not limited to, the implied warranties of merchantability and fitness for a particular 
purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or 

direct, indirect, special, incidental or consequential damages in connection with the furnishing, 

performance, or use of this material. 

Possible inaccuracies of information are under the responsibility of the project. This report reflects 

solely the views of its authors. The European Commission is not liable for any use that may be made of 
the information contained therein. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 3 of 25 Submission date: 2014-03-05 

Index: 

 

1. Executive summary ................................................................................. 5 

1.1 Lessons Learned .................................................................................... 5 

1.2 Requirements Engineering ...................................................................... 5 

2. Introduction ............................................................................................ 6 

2.1 Purpose, context and scope of this deliverable .......................................... 6 

3. Research and Development Methodology ................................................ 7 

4. Lessons Learned in the Third Cycle .......................................................... 8 

4.1 Lessons Learned in WP3 ......................................................................... 8 

4.2 Lessons Learned in WP4 ................................................................. 8 

4.2.1 Analysis of Lessons Learned ............................................................ 9 

4.3 Lessons Learned in WP5 ........................................................................ 10 

4.3.1 Analysis of Lessons Learned ........................................................... 10 

4.4 Lessons Learned in WP6 ........................................................................ 11 

4.4.1 Analysis of Lessons Learned ........................................................... 12 

4.5 Lessons Learned in WP7 ........................................................................ 12 

4.6 Analysis of Lessons Learned ................................................................... 13 

4.7 Lessons Learned in WP8 ........................................................................ 13 

4.7.1 Analysis of Lessons Learned ........................................................... 14 

4.8 Lessons Learned in WP9 ........................................................................ 15 

4.8.1 Analysis of Lessons Learned ........................................................... 16 

4.9 Lessons Learned in WP10 ...................................................................... 16 

4.9.1 Analysis of Lessons Learned ........................................................... 16 

4.10 Lessons Learned in WP11 ............................................................... 16 

4.11 Other Work Packages .................................................................... 17 

5. Requirements Engineering in the Third Cycle ........................................ 18 

5.1 Change request and reengineering originating from WP3 ........................... 18 

5.1.1 Lessons Learned ........................................................................... 18 

5.1.2 New requirements ......................................................................... 18 

5.1.3 Updated requirements ................................................................... 18 

5.1.4 Deleted requirements .................................................................... 18 

5.2 Change request and reengineering originating from WP4 ........................... 18 

5.2.1 Lessons Learned ........................................................................... 18 

5.2.2 New requirements ......................................................................... 18 

5.2.3 Updated requirements ................................................................... 19 

5.2.4 Deleted requirements .................................................................... 19 

5.3 Change request and reengineering originating from WP5 ........................... 19 

5.3.1 Lessons Learned ........................................................................... 19 

5.3.2 New requirements ......................................................................... 19 

5.3.3 Updated requirements ................................................................... 19 

5.3.4 Deleted requirements .................................................................... 19 

5.4 Change request and reengineering originating from WP6 ........................... 19 

5.4.1 New requirements ......................................................................... 19 

5.4.2 Updated requirements ................................................................... 20 

5.4.3 Deleted requirements .................................................................... 20 

5.5 Change request and reengineering originating from WP7 ........................... 20 

5.5.1 Lessons Learned ........................................................................... 20 

5.5.2 New requirements ......................................................................... 20 

5.5.3 Updated requirements ................................................................... 20 

5.5.4 Deleted requirements .................................................................... 20 

5.6 Change request and reengineering originating from WP8 ........................... 20 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 4 of 25 Submission date: 2014-03-05 

5.6.1 Lessons Learned ........................................................................... 20 

5.6.2 New requirements ......................................................................... 20 

5.6.3 Updated requirements ................................................................... 20 

5.6.4 Deleted requirements .................................................................... 21 

5.7 Change request and reengineering originating from WP9 ........................... 21 

5.7.1 Lessons Learned ........................................................................... 21 

5.7.2 New requirements ......................................................................... 21 

5.7.3 Updated requirements ................................................................... 21 

5.7.4 Deleted requirements .................................................................... 21 

5.8 Change request and reengineering originating from WP10 ......................... 21 

5.8.1 Lessons Learned ........................................................................... 21 

5.8.2 New requirements ......................................................................... 22 

5.8.3 Updated requirements ................................................................... 22 

5.8.4 Deleted requirements .................................................................... 22 

5.9 Change request and reengineering originating from WP11 ......................... 22 

6. Validation Results .................................................................................. 23 

6.1 Summary of verification results .............................................................. 23 

6.2 Summary of validation results ................................................................ 23 

6.3 Summary of results from usability testing ................................................ 23 

6.4 Summary of outcomes of field trials ........................................................ 23 

7. Impact Assessment ............................................................................... 24 

7.1 Impact on overall architecture ................................................................ 24 

7.2 Impact on architecture for Automotive Manufacturing ............................... 24 

7.3 Impact on architecture for Food Traceability ............................................ 24 

7.4 Impact on individual work packages ........................................................ 24 

8. References ............................................................................................ 25 

 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 5 of 25 Submission date: 2014-03-05 

1. Executive summary 

This deliverable reports the results from the third iteration cycle of the work done in Subtask 2.3.1 
Lessons Learned collection and analysis and contains a complete list of Lessons Learned during this 

cycle of the ebbits project, organised per work package. 

The subsequent analysis of Lessons Learned has identified a number of relevant improvement 

opportunities for the specification of requirements for the next cycles of the iterative development 
process. The next cycles of the project is actual the last year of the project.  

Also included in this deliverable are the results of Subtask 2.3.5 Requirements re-engineering. The 

resulting new and updated requirements arise from the analysis of Lessons Learned and from the 
continuous technology, regulatory standards and market watch.  

The document includes the content of what was originally planned as two separate deliverables, i.e., 
D2.7.3 Lessons Learned and results of usability evaluation 3 and D2.8.3 Change request and 
reengineering report 3, combined under the name of the latter. This measure was taken to reduce 
duplication and redundancy. 

The ensuing document feeds into deliverable D2.9.3 Updated requirements report 3. 

1.1 Lessons Learned 

Section 4 contains all Lessons Learned in cycle 3 and the subsequent analysis, the outcome of which 
is the identification of a number of improvement opportunities. The ensuing changes in requirements 

are reported in Section 5. 

The Lessons Learned have been collected and reported per work package. Details can be seen in the 

table below in Section 1.2. 

In the second cycle no Lessons Learned have been collected in WP1, WP2, WP3, WP9, WP11 and 

WP12. 

In total, the second iteration cycle yielded 22 Lessons Learned.  

1.2 Requirements Engineering 

Section 5 describes the requirement engineering work performed in the third iteration cycle. This has 

resulted in the creation of 3 new requirements, modification of 2 requirements and deletion of 3 
requirements, relative to the complete list reported in D2.9.2 Updated requirements report 2. As 

expected, these changes arise mainly from the efforts of the technical work packages. 

 

Work package Lessons 

Learned 

New 

requirements 

Updated 

requirements 

Deleted 

requirements 

WP4 5 0 0 0 

WP5 5 0 0 0 

WP6 2 2 0 0 

WP7 2 0 0 0 

WP8 8 1 2 3 

WP10 0 0 1 0 

Total 22 3 3 3 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 6 of 25 Submission date: 2014-03-05 

2. Introduction 

This deliverable reports outcomes of the third iteration cycle of Task T2.3 Evolutionary requirements 
refinement, more specifically the results of Subtask 2.3.1 Lessons Learned collection and analysis 
and Subtask 2.3.5 Requirements re-engineering. 

The document includes the content of what was originally planned as two separate deliverables, i.e., 

D2.7.3 Lessons Learned and results of usability evaluation 3 and D2.8.3 Change request and 
reengineering report 3, combined under the name of the latter. This measure was taken to reduce 

duplication and redundancy. 

2.1 Purpose, context and scope of this deliverable 

This document contains a complete list of Lessons Learned during the third iteration cycle of the 

ebbits project, organised per work package. These Lessons have been extracted from the joint 

repository in the GForge Wiki. 

The Lessons Learned have subsequently been analysed to elicit relevant improvement opportunities 

for the specification of requirements for the next cycles of the iterative development process. 

This analysis has resulted in the creation of new requirements and updating and deleting of existing 

requirements. Additional changes to the requirements arise from the continuous technology, 

regulatory standards and market watch and from verification and validation results. 

The content of this document feeds into deliverable D2.9.3 Updated requirements report 3. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 7 of 25 Submission date: 2014-03-05 

3. Research and Development Methodology 

The ebbits project has adopted a human-centred, iterative development process following the 

guidelines of ISO 9241-210 Human-centred design for interactive systems1. A description of the 

methodology, the software engineering process, the iterative approach, the reengineering of 
requirements and the ebbits application of Lessons Learned can be found in deliverable D2.7.1 
Lessons Learned and results of usability evaluation 1. 

 

                                           
1 ISO 9241-210:2010-03 (E). Ergonomics of human-system interaction - Part 210: Human-centred design for 
interactive systems 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 8 of 25 Submission date: 2014-03-05 

4. Lessons Learned in the Third Cycle 

This section contains all Lessons Learned in cycle 3 and the subsequent analysis. To facilitate 

referring to individual Lessons Learned they have been named LL followed by the relevant work 

package number and Lesson number (as they appear in the Wiki repository), e.g., LL WP3-1. This 
process results in the identification of a series of improvement opportunities and into the need for 

new, changed and deleted requirements. The changes in requirements are reported Section 5. 

A total of 22 Lessons Learned has been reported in the third iteration cycle. 

4.1 Lessons Learned in WP3 

The work undertaken in WP3 involves Enterprise frameworks for life cycle management. TUK is the 
WP leader and no Lessons Learned have been collected and validated from this WP. 

4.2 Lessons Learned in WP4 

The work undertaken in WP4 relates to Semantic knowledge infrastructure. SAP is the WP leader 
and 2 Lessons Learned have been collected and validated from this WP. 

 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 
affected 

SAP LL 
WP4-1 

Application developers cannot define the 
mapping of devices to domain entities. 

Toolset support is 
required that 

allows 

administrators of a 
local ebbits 

instance to map 
the available 

devices to the 

domain model 
defined by the 

application. 

EBBITS-386 

SAP LL 

WP4-2 

All (and whole) ontologies are stored as 

local copies in every ebbits component 

regardless whether some information is 
useful or not for the business interest of 

the component owner. 

This results in 

difficulties to 

distribute/update 
ontologies, causing 

potential 
inconsistencies and 

scalability issues. It 

also leads to 
wasted resources 

as well as 
inefficient ontology 

reasoning. 

 

TUK-LL-
WP4-3 

We had only a static information about the 
birth, slaughter dates of animals from 

farms, so we had to prepare a simulator 
generating such a data. In the future, real 

sensors will provide these data together 

with interfaces to the existing SAP systems 
of farms. 

Food traceability 
model was 

implemented but 
no feed genetic 

info was provided, 

so the food gained 
mainly animal 

health and life info, 

EBBITS-363 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 9 of 25 Submission date: 2014-03-05 

additionally the 

info from food 
transport is logged. 

TUK-LL-
WP4-4 

Our models were linked to appropriate 
concepts of the IOT-A ontology 

Our device 
ontology should be 

aligned with 

existing models to 
avoid future 

interoperability 
issues  

EBBITS-253 

TUK-LL-

WP4-5 

Food traceability chain uses model of 

services for matching of appropriate step 
services to gain the relevant information 

for food 

Digital thing can be 

almost anything 
based on domain, 

so we had to 
implement the 

service 

matchmaking to 
get appropriate 

web services for 
different digital 

things 

EBBITS-274 

 

4.2.1 Analysis of Lessons Learned 

• SAP LL WP4-1: During an internal conference of WP4, partners agreed on the following: 

Applications based on ebbits should be deployable in different environments. The 
applications will require, e.g., a certain type of information, but it will not know which 

devices will be available in the installation environment to provide this information. The 

application developer can only define a generic domain model, but when deployed, the 
domain entities contained therein need to be mapped to the devices that are available. This 

should be configurable at runtime by an administrator. The idea was to provide a tool that 
allows to do this. 

• SAP LL WP4-2: During the development for the manufacturing scenario, we realized it 

resulted in unnecessary redundancy and performance inefficiency to host a whole copy of 

entire ontology models by each individual ebbits component. Besides duplicated local 
ontology storage leads also to problems with distribution/updates of ontology models. 

Therefore, when we took the ontology server to the cloud, we tried to solve this problem by 
storing ontologies at central places, and local components just host a thin client layer to 

access/query only relevant parts of ontologies. 

• TUK-LL-WP4-3 During the preparation of the food traceability scenario we have learned that 

we have not enough data from a direct access to the farm CRMs or sensors monitoring 

animals. So we have prepared a simulation SW, which generates data in the exactly same 

form as a previously received static example from the farm. Thus we can simulate 
continuous data streams coming from food lifecycle. 

• TUK-LL-WP4-4 IOT-A models developed within the IOT-A project were identified as a 

potentially expandable and partially reusable within the ebbits. As our models used similar 
concepts to describe devices, services, quality of services, we have decided to link our 

models to IOT-A models, so it can be later easier to identify which of our data is related to 

any possible IOT-A implementations in the same domain 

• TUK-LL-WP4-5 The ebbits semantic model contains a digital think concept. Any system 

dealing with the real thing represented by the digital thing concept in the ebbits platform 

should be able to provide a service by which the data about the digital thing can be 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 10 of 25 Submission date: 2014-03-05 

accessed. However, it is not known in advance, where exactly and how this service is 
implemented in different systems. So we have modelled in our model a property of the 

digital thing service, where its instance clearly specifies how and where to access the digital 

thing services. 

4.3 Lessons Learned in WP5 

The work in WP5 involves Centralised and distributed intelligence. FIT is the WP leader and 5 

Lessons Learned have been collected and validated from this WP. 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 

affected 

FIT LL 
WP5-1 

Defining rules with drools requires some 
concepts from the ontology; this is error 

prone w.r.t. mistyping the concept names 

Defining rules for 
context aware 

applications must 
be supported by 

type safe feature 

 

FIT LL 
WP5-2 

Not all ebbits developer users have 
experience in programming language such 

as JAVA.  

Users should be 
able to define rules 

with simple visual 

language 

 

FIT LL 

WP5-3 

Querying ontology every time sensor data 

are acquired could affect ebbits 
performance. 

We need to pre-

cache the partial 
knowledge from 

the ontology that 

are often used as 
JAVA objects. 

 

FIT LL 

WP5-4 

Drools and Ontology add too much 

complexity for prototype developments 

Experienced 

developers would 
like to work with 

programming 
language that they 

familiar with e.g. 
Java & .NET 

EBBITS-403, 

EBBITS-397 

 

FIT LL 

WP5-5 

Developing prototypes include partly 

repetitive works 

Programming work 

related to data 
acquisition and 

provisioning could 

be automated by 
some code 

generation tool 

EBBITS-404 

 

4.3.1 Analysis of Lessons Learned 

Five lessons learned were identified: 

• FIT LL WP5-1: During the ebbits Month 24 Demonstrator preparation, an informal interview 

to the developers was conducted. Most of the developers found it was difficult to define 

context rules using drools and without type safe features e.g., provided by tools for other 
programming language like Java and C# provide. 

• FIT LL WP5-2: the users of ebbits from COMAU do not have computer science background 

and they do not have any experiences with programming language as java. They would 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 11 of 25 Submission date: 2014-03-05 

prefer graphical language as they are used to ladder logic language (IEC 61131). 

Therefore EBBITS-403, EBBITS-397 were added (See FIT-LL WP5-4) 
 

• FIT LL WP5-3: During the ebbits Month 24 Demonstrator preparation we learned that 

accessing ontology is much slower than normal database, therefore some knowledge from 

the ontology that are used quite often should be cached in the memory. 

• FIT LL WP5-4: During the ebbits Month 24 Demonstrator preparation we learned that drools 

adds unnecessary complexity for ebbits use cases and the experienced programmers would 

prefer defining rules using programming language that they are familiar with such as java. 

Therefore EBBITS-403, EBBITS-397 were added to build visual programming tool that 
generate the links between sensor stream to the domain objects. The visual model should 

encapsulate the complexity of accessing sensors and expose them as java objects. These 
requirements are also relevant to (FIT LL WP5-2) 

• FIT LL WP5-5: During the ebbits Month 24 Demonstrator preparation some of the 

programming tasks such as connecting and provisioning sensor data could be automated 
using sort of template code. Thus EBBITS-404 was added to generate java code 

automatically from a model definition. 

 

4.4 Lessons Learned in WP6 

The work in WP6 revolves around Mainstream business systems. SAP is the WP leader and 2 

Lessons Learned have been collected and validated from this WP. 

 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 

affected 

SAP 

LL WP6-1 

Frequent changes and additions of the 

data model occur during the 

implementation of services for an ebbits 
use case. Each change requires a lot of 

additional but often also in another sense 
redundant code to write if no standard 

data exchange formats together with a 
connectivity framework are used. 

A connectivity 

framework with 

standard data 
formats like Atom 

or OData should be 
used. This allows 

for changes in the 
data model to be 

nearly 

automatically 
reflected in the 

provided service. 

EBBITS-402 

SAP 

LL WP6-2 

Managers, for example a plant manager in 

the manufacturing scenario, or users 

without the technical knowledge of 

Business Analysts want to get insights 

from Business Intelligence data quickly 

without the need for help from an IT 

department. 

 

A “point and click” 
solution to 

manipulate, 
organize and 

consolidate data 
and answer 

business 

intelligence 
questions in a 

visual way should 
be available. This 

could also be 

utilized by users 
without technical 

knowledge about 

EBBITS-401 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 12 of 25 Submission date: 2014-03-05 

query languages 

like SQL.  

 

4.4.1 Analysis of Lessons Learned 

Two lessons learned were identified: 

• LL WP6-1: During the ebbits Month 24 Demonstrator preparation, an internal evaluation 

with a trial version of just the ABAP (programming language of SAP) stack of the SAP AG 

without any connectivity framework was conducted. It turned out to be too inflexible to 
accommodate the frequent changes in the data model during the preparation phase. 

Therefore, the decision was taken to use a connectivity framework with standard data 
exchange. This resulted in creation of requirement EBBITS-402. 

• LL WP6-2: Farmers as in the ebbits traceability scenario do not have an IT department or 

business analysts at their disposal. On the other hand, managers in the car manufacturing 

scenario want to have answers to their questions quickly, without depending on IT. All 
these users still want to gain insights from business intelligence data, but they need a very 

easy-to-use solution. This resulted in creation of requirement EBBITS-401. 

4.5 Lessons Learned in WP7 

The work undertaken in WP7 deals with Event management and service orchestration. CNET is the 

WP leader and the following Lessons Learned have been collected and validated from this WP. 

 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 

affected 

CNET-LL 

WP7-3-1 

Traceability is a property that can be 

ascribed to any IoT enabled physical or 

virtual entity (i.e., a DigitalThing  in the 
ebbits domain ontology) 

Traceability should 

be reflected by 

architectural 
concepts in an IoT-

Architecture 

EBBITS-201 

 

EBBITS-165 

CNET-LL 
WP7-3-2 

The ebbits architecture has been mapped 
to (parts of) the IoT-A project generic 

architecture, in order to increase our 
understanding of what can be considered 

generic and specific in the ebbits 
architecture. 

 

Mapping the ebbits 
system to an 

existing (in this 
case the IoT-A) 

reference 
architecture, allows 

us to analyse 

ebbits concepts 
and designs from 

an external 
perspective. It 

facilitates 

comparison with 
other IoT systems 

and communication 
with stakeholders. 

We should also 
consider if specific 

ebbits solutions 

could influence the 
IoT framework or 

other similar 

EBBITS-406 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 13 of 25 Submission date: 2014-03-05 

frameworks. 

 

4.6 Analysis of Lessons Learned 

• CNET-LL WP7-3-1. Several of the ebbits architectural components can be said to support the 

notion of traceability, such as the thing manager, service orchestration components and 

support for global identity (based on EPC). It can be argued that traceability is not a 
distinguishing feature of specific IoT architectures, since there are obvious applications that 

are not focused on traceability, but we believe it is a sufficiently significant feature to be 
included in a generic architecture like the one provided by ebbits.  

• CNET-LL WP7-3-2. The IoT-A proposed architecture is a fairly recent development and is yet 

to get a wider dissemination and application. The ebbits project should consider what 

specific ebbits solutions can be used to influence the IoT framework (or other related IoT 
architectures). 

4.7 Lessons Learned in WP8 

The work in WP8 takes care of Physical world sensors and networks. ISMB is the WP leader and 8 
Lessons Learned have been collected and validated from this WP. 

 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 
affected 

FIT 

LL WP8-3-1 

Users of IT systems often fail to 

understand or accept security policies. If 
an interface provides users with hints and 

explanations, they are more likely to 
follow regulations. 

Security related 

user interfaces 
should have an e-

learning aspect, 
teaching users to 

properly configure 
the system. 

EBBITS-405 

FIT 

LL WP8-3-2 

Security, which enforces delivery order, 

might cause unwanted effects.  

For example when dividing a large 

message into smaller packets these may 

arrive in a different order at the recepient 
side. With a security enforcing order this 

large message is rejected. 

Security, which 

enforces order, 
has to be clearly 

marked and 

documented. 

EBBITS-405 

 

ISMB 

LL WP8-3-3 

In order to perform first tests in the easier 

way, the multi-radio feature, today,  is 

managed as a PWAL sub-component. This 
implies that the multi-radio package is 

different for any PWAL installation, 
because requires knowledge about the 

specific operations performed and about 

the local network. Furthermore, the 
network manager is unaware of the 

available network interfaces. 

The Multi-radio 

package has to 

become a sub-
component (like a 

plug-in) of the 
LinkSmart 

Network Manager. 

EBBITS-353 

ISMB 

LL WP8-3-4 

RFID systems interfere with each other 
due to electromagnetic mutual 

interference in the transmission/reception. 
This lesson has been experienced while 

developing a component for the 

In an 
environment with 

many RFID 
systems working 

simultaneously it 

EBBITS-345 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 14 of 25 Submission date: 2014-03-05 

traceability scenario. is necessary to 

manage readings 
timing. 

ISMB 

LL WP8-3-5 

Water has high conductivity; it reflects 
and absorbs the electromagnetic signal. 

UHF tags are particularly susceptible to 

this problem. The usage of UHF tags with 
organic materials (made of water) can 

introduce relevant problems. 

In the entire 
traceability chain 

the usage of 

certain 
technologies 

needs to take into 
account the 

physical nature of 

traced objects.  

none 

ISMB 

LL WP8-3-6 

In the traceability scenario, for an 

efficient and effective control of the "cold 
chain”, it is necessary that relevant 

information (temperature, time of 

transport, etc.) are available and accurate 
throughout the entire chain. The 

absence/missing of certain data may 
generate errors and problems. E.g., in the 

calculation of the product remaining shelf 

life, if something is missing the calculation 
goes wrong and shelf life is inconsistent 

(this could lead to wrong and dangerous 
information for the end-user) 

If relevant 

information is 
missing, this 

needs to be taken 

into account while  
elaborating 

enhanced 
traceability 

features. 

none 

ISMB 

LL WP8-3-7 

Auto-generated code was used for the 

development of PWAL; during the 
progress of the development, this has 

resulted in a great source of duplication. 
From this, it was understood that relying 

on auto-generated code simplifies the 

developer's life only initially, while it 
introduces complexity when the project 

enlarges. Also, often, this practice does 
not allow to fall into certain levels of code 

quality. 

Even if the auto-

generated code is 
not necessarily a 

bad thing, it could 
be avoided in 

some situations or 

a slightly different 
approach could be 

used. A possible 
strategy could be 

reducing the part 

of code that 
needs to be 

automatically 
generated and 

insert in the 
framework the 

redundant code. 

None 

ISMB 

LL WP8-3-8 

The initial PWAL development code 
documentation, even if available, was not 

sufficient; this has taught us that a more 

in-depth documentation would help, 
especially in very critical phases (like the 

last complete PWAL code refactoring). 

It is a good 
practice to 

document the 

code; more 
documentation is 

available, the 
better it is. 

none 

4.7.1 Analysis of Lessons Learned 

Regarding software development experience issues, one lesson has been identified, regarding 
security and security in the process. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 15 of 25 Submission date: 2014-03-05 

• LL WP8-3-1, LL WP8-3-2: Generally, it is desired that security which messages arrive in the 

same order as they have been sent in. However, when many messages are sent in close 
time, switches in order over IP are a general phenomenon. To avoid frustration such 

behaviour of the running security has to be well documented and developers should be well 

informed. 

Other two lessons are related with actual code developments and programming methodologies: 

• LL WP8-3-7: the usage of auto-generated code, even if it partly simplifies the developer 

work, introduces complexity and is prone to code duplication. This could impact negatively 
with the code quality. The auto-generation of code should be adjusted to avoid duplication 

of code, maybe moving the shared components into the core capabilities of the relevant 
framework. 

• LL WP8-3-8: this is an obvious lesson, which any developer needs actually to know. The 

code documentation is particularly important, since the early stages of any development. 

The code documentation of the PWAL needs to be additionally improved. 

Also, other three process related lessons, mainly related with the traceability scenario, were 

identified: 

• LL WP8-3-4: the lesson was raised while preparing the M36 demo. In the same environment 

two RFID reader were working together, interfering with each other. The only way to 

address this problem is to manage reading timing (in a time division multiplexing way). This 

lesson could be connected to the requirement EBBITS-345 about a unique ebbits timing 
system. 

• LL WP8-3-5: the choice of UHF technology for bulk beef identification can introduce 

problems because the organic tissues (mainly made of water) reflect and absorb the 
electromagnetic signal. The usage of certain technologies cannot disregard from physical 

nature of objects taken into account. 
• LL WP8-3-6: In order to perform an effective "cold chain” monitoring it is necessary that 

relevant information (temperature, time of transport, etc.) is available on time and with the 

correct accuracy, in order to prevent potential healthy risky problems. The absence of 

certain data needs to be taken into account while performing some value added services like 
the dynamic remaining shelf-life evaluation. 

Finally, one lesson affects the architectural level: 

• LL WP8-3-3: in order to perform the multi-radio features a two steps approach was 

considered to finally achieve the integration those capabilities in ebbits: in the first one, the 

early implementation, multi-radio was not inserted into the network manager because too 

complex, and managed as a PWAL sub-component. This, even if correctly working, implies 
that the multi-radio packages need to be configured for each different PWAL instance; e.g. it 

could be necessary to configure available network interfaces and rules on when to use them. 
In the second instance, the multi-radio package needs to be integrated in the overall 

architecture, becoming a sub-component of the LinkSmart Network Manager. 

4.8 Lessons Learned in WP9 

The work in WP9 involves Platform integration and deployment. CNET is the WP leader and 2 

Lessons Learned have been collected and validated from this WP. 

 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 

affected 

ISMB 

LL WP9-3-

1 

Auto-generated code was used for the 
development of PWAL; during the progress 

of the development, this has resulted in a 
great source of duplication. From this, it 

Even if the auto-
generated code is 

not necessarily a 
bad thing, it could 

None 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 16 of 25 Submission date: 2014-03-05 

was understood that relying on auto-

generated code simplifies the developer's 
life only initially, while it introduces 

complexity when the project enlarges. 
Also, often, this practice does not allow to 

fall into certain levels of code quality. 

be avoided in some 

situations or a 
slightly different 

approach could be 
used. A possible 

strategy could be 
reducing the part 

of code that needs 

to be automatically 
generated and 

insert in the 
framework the 

redundant code. 

ISMB 

LL WP9-3-

2 

The initial PWAL development code 
documentation, even if available, was not 

sufficient; this has taught us that a more 
in-depth documentation would help, 

especially in very critical phases (like the 

last complete PWAL code refactoring). 

It is a good 
practice to 

document the 
code; more 

documentation is 

available, the 
better it is. 

none 

 

4.8.1 Analysis of Lessons Learned 

The two lessons are related with actual code developments and programming methodologies: 

• LL WP9-3-1: the usage of auto-generated code, even if it partly simplifies the developer 

work, introduces complexity and is prone to code duplication. This could impact negatively 
with the code quality. The auto-generation of code should be adjusted to avoid duplication 

of code, maybe moving the shared components into the core capabilities of the relevant 
framework. 

• LL WP9-3-2: this is an obvious lesson, which any developer needs actually to know. The 

code documentation is particularly important, since the early stages of any development. 

The code documentation of the PWAL needs to be additionally improved. 

 

4.9 Lessons Learned in WP10 

The work undertaken in WP10 involves End-to-end business applications. COMAU is the WP leader 
and no Lessons Learned have been collected and validated from this WP. 

 

Org. 

No. 

Experience and knowledge gained Lesson Learned Requirement 
affected 

    

 

4.9.1 Analysis of Lessons Learned 

4.10 Lessons Learned in WP11 

A plan for demonstration has been developed. However, at the time of writing, only the Campus 
Party event in London has taken place and no lessons involving requirements have been learned. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 17 of 25 Submission date: 2014-03-05 

4.11 Other Work Packages 

Work packages WP1, WP2 and WP12 have collected no Lessons Learned in the third cycle, largely 
due to their non-technical nature.  

 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 18 of 25 Submission date: 2014-03-05 

5. Requirements Engineering in the Third Cycle 

A total of 22 Lessons Learned has been reported, validated and analysed in Section 4. Relative to 

the set of requirements listed in ‘D2.9.2 Updated requirements report 2’ this has resulted in 3 new 

requirements, 3 changed requirements and 3 deleted requirements originating from different work 
packages as detailed below. 

 

Work package Lessons 
Learned 

New 
requirements 

Updated 
requirements 

Deleted 
requirements 

WP4 5 0 0 0 

WP5 5 0 0 0 

WP6 2 2 0 0 

WP7 2 0 0 0 

WP8 8 1 2 3 

WP10 0 0 1 0 

Total 22 3 3 3 

 

5.1 Change request and reengineering originating from WP3  

5.1.1 Lessons Learned 

No new lessons learned were identified 

5.1.2 New requirements 

No new requirements were identified. 

5.1.3 Updated requirements 

No requirements were updated. 

5.1.4 Deleted requirements 

No requirements were deleted. 

5.2 Change request and reengineering originating from WP4 

5.2.1 Lessons Learned 

5 lessons learned have been reported, validated and analysed. The analysis has resulted in the 
following changes to requirements.  

5.2.2 New requirements 

 

Key Summary Rationale 

EBBITS- Toolset support allows Application developers cannot define the mapping of 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 19 of 25 Submission date: 2014-03-05 

386 administrators of a local ebbits 

instance to map the available 
devices to the domain model 

defined by the application. 

devices to domain entities. 

5.2.3 Updated requirements 

No requirements were updated. 

5.2.4 Deleted requirements 

No requirements were deleted. 

5.3 Change request and reengineering originating from WP5 

5.3.1 Lessons Learned 

5 Lessons Learned have been reported, validated and analysed. The analysis has resulted in the 

following changes to the requirements. 

5.3.2 New requirements 

No new requirements were identified. 

5.3.3 Updated requirements 

No requirements were updated. 

5.3.4 Deleted requirements 

No requirements were deleted. 

5.4 Change request and reengineering originating from WP6 

The work in WP6 revolves around Mainstream business systems. SAP is the WP leader and 2 
Lessons Learned have been collected and validated from this WP. 

5.4.1 New requirements 

This resulted in creation of requirement EBBITS-401 and EBBITS-402. 

Key Summary Rationale 

EBBITS-

401 

Enable self-service approach to BI 

information 

Managers or users without the technical knowledge of 

Business Analysts want to get insights for enabling 
business-based IoT quickly without the need for help from 

an IT department. 

EBBITS-
402 

Data exchange with Enterprise 
Systems in standard formats like 

Atom or OData 

For the frequent changes and additions of the data model 
which are necessary for the different ebbits use cases, 

implementing services without a connectivity framework 
was not flexible enough. For each change this requires to 

write too much own code for standard functions. A 

connectivity framework with standard data formats is 
needed where changes in the data model are nearly 

automatically reflected in the provided service. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 20 of 25 Submission date: 2014-03-05 

5.4.2 Updated requirements 

No requirements were updated. 

5.4.3 Deleted requirements 

No requirements were deleted. 

5.5 Change request and reengineering originating from WP7 

5.5.1 Lessons Learned 

2 Lessons Learned have been reported, validated and analysed. The analysis has resulted in the 
following changes to the requirements. 

5.5.2 New requirements 

No new requirements were identified. 

5.5.3 Updated requirements 

No requirements were updated. 

5.5.4 Deleted requirements 

No requirements were deleted. 

5.6 Change request and reengineering originating from WP8 

5.6.1 Lessons Learned 

In the third period, 8 Lessons Learned have been added so reported in this deliverable, such as 
validated and analysed. The analysis has resulted in the following requirements addition and 

modification. Furthermore, in the last period has been registered the deletion of three already 
exiting requirements. Other requirements has been modified accordingly to the ebbits requirements 

process management. 

5.6.2 New requirements 

Key Summary Rationale 

EBBITS-

405 

Security has to be well 

documented 

Security, which enforces order, has to be clearly marked and 

documented. Security related user interfaces should have an e-
learning aspect, teaching users proper use. Generally it is 

desired that security enforces that messages arrive in the same 
order as they have been sent in. However, when many 

messages are sent in close time, switches in order over IP are a 

general phenomenon. To avoid frustration such behavior of the 
running security has to be well documented and developers 

should be well informed. 

5.6.3 Updated requirements 

The requirement EBBITS-353 has been update to better describe the problem, accordingly with the 

lesson LL WP8-3-4; the requirement EBBITS-345 has been slightly modified thanks to another lesson 
(LL WP8-3-4) raised in this period, which has confirmed the problem. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 21 of 25 Submission date: 2014-03-05 

 

Key Summary Rationale 

EBBITS-

353 

Multi-radio devices should be 

able to detect which 
LinkSmart Network Manager 

to connect/migrate to, 

according to the current 
network interface active 

Devices with multi-radio capabilities should be able to switch 

interface, and therefore network, without compromising the 
connectivity to the LinkSmart layer. The multi-radio features 

should be handled at Network Manager level. Furthermore, 

when migrating to a new interface, the device should register 
itself to the proper Network Manager available in that network. 

At network manager, level should be possible to automatically 
manage multi-radio features, if any. Devices accessing ebbits by 

using non-corporate or external networks (e.g. 3GPP) should 

know, somehow automatically, which border network manager 
must connect to. 

EBBITS-
345 

ebbits should implement a 
distributed time dissemination 

and synchronization service 

Several application in ebbits relay directly or indirectly on 
accurate time-stamping of data and events, thus given the 

distributed nature of ebbits, a time dissemination and 

synchronization service is required within the platform. ebbits 
should provide a time dissemination and time synchronization 

service. 

 

5.6.4 Deleted requirements 

The requirements EBBITS-400 has been moved to the “resolved” status, thanks to the recent third 
year developments. Results that refer to this requirement will be presented at M36 demo.  The 

requirements EBBITS-169 and EBBITS-238 have been closed as out-of-scope as it is infeasible for 
ebbits to put electronic ear-tags in all animals and to enforce new procedures in the industry. 

5.7 Change request and reengineering originating from WP9 

5.7.1 Lessons Learned 

No Lessons Learned have been reported, validated and analysed. The analysis has resulted in the 
following changes to the requirements. 

5.7.2 New requirements 

No new requirements were identified. 

5.7.3 Updated requirements 

No requirements were updated. 

5.7.4 Deleted requirements 

No requirements were deleted. 

5.8 Change request and reengineering originating from WP10 

5.8.1 Lessons Learned 

No Lessons Learned have been reported, validated and analysed. The analysis has resulted in the 
following changes to the requirements. 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 22 of 25 Submission date: 2014-03-05 

5.8.2 New requirements 

No new requirements were identified. 

5.8.3 Updated requirements 

The requirement EBBITS-166 has been added to the M36 demo as both RFID and QR barcodes are 
used. It has also been linked to the innovation General purpose RFID reader interface (CIC 10). 

5.8.4 Deleted requirements 

No requirements were deleted. 

5.9 Change request and reengineering originating from WP11 

No lessons or requirements has been created or changed for WP11. 

 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 23 of 25 Submission date: 2014-03-05 

6. Validation Results 

6.1 Summary of verification results 

No verification results have been reported by the technical work packages. 

6.2 Summary of validation results 

No end users have so far been involved in validation testing.  

6.3 Summary of results from usability testing 

No usability testing has been done on the prototypes at this stage. 

6.4 Summary of outcomes of field trials 

No field trials have been performed in the third development cycle. 

 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 24 of 25 Submission date: 2014-03-05 

7. Impact Assessment 

7.1 Impact on overall architecture 

The architecture description has been updated with concepts and components specifically designed 

to support traceability. A first mapping of ebbits concepts and structures to the IoT-A reference 
architecture was done during this period. Further IoT-A compliance should be analysed in the further 

developments of the architecture.  

7.2 Impact on architecture for Automotive Manufacturing 

Improved access to BI information is sought for.  

7.3 Impact on architecture for Food Traceability 

There is a need for additional initial product data in order to improve the early annotation of the 

products/things to be traced throughout the traceability chain. Also improved access to sensor data 
during the cold chain would be beneficiary, e.g., in order to more accurately calculate shelf life.  

7.4 Impact on individual work packages  

Apart from the requirements re-engineering reported above, no additional impact results on  
individual work packages have been reported . 

 



ebbits D2.8.3 Change request and re-engineering report 3 
 

 

Document version: 1.1 Page 25 of 25 Submission date: 2014-03-05 

8. References 

Use the following style for references. 

(EC, 2007) European Commission (2007). A lead market initiative for Europe. 
Brussels. COM(2007) 860 final. 

(Milagro et al 2008) Milagro, F., Antolin, P., Kool, P., Rosengren, P., Ahlsén M. (2008). SOAP 
tunnel through a P2P network of physical devices, Internet of Things 
Workshop, Sophia Antopolis. 

(Chen et al 2007) Chen, Y.C., Liu, C.H., Wang, C.C., Hsieh, M.F. (2007). “RFID and IPv6-
enabled Ubiquitous Medication Error and Compliance Monitoring System”, 
9th International Conference on e-Health Networking, Application and 
Services, 2007, 19-22 June 2007 Page(s):105 - 108. 

 

 

 


