
Document version: 0.0

Enabling the business
Internet of Things and Services

D5.2.1 Architecture for intelligence integration

Published by the ebbits Consortium

Project co-funded by the European Commission

Objective ICT-2009.1.3: Internet of Things and Enterprise environments

Enabling the business-based
Internet of Things and Services

(FP7 257852)

D5.2.1 Architecture for intelligence integration

Published by the ebbits Consortium

Dissemination Level: Public

funded by the European Commission within the 7th Framework Programme

2009.1.3: Internet of Things and Enterprise environments

 Submission date: Date

D5.2.1 Architecture for intelligence integration

Framework Programme

2009.1.3: Internet of Things and Enterprise environments

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 2 of 42 Submission date: 2011-02-28

Document control page

Document file: D5.2.1 Architecture for intelligence integration.docx

Document version: 1.0

Document owner: Ferry Pramudianto (Fraunhofer FIT)

Work package: WP5 – Architecture for intelligence integration

Task: T5.1 – Architectural analysis and description of the centralized and

distributed intelligent service structured

Deliverable type: PU

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Amro Al-Akkad

Andreas Zimmermann

Christian Prause

Ferry Pramudianto

Markus Eisenhauer

2010-12-9 Table of Contents,

Initial Requirements Clustering,

Initial idea for sensor fusion, context,

and control management

0.2 Ferry Pramudianto 2010-12-9 Sensor Fusion Architecture

0.3 Andreas Zimmermann

Ferry Pramudianto

2010-01-10 Context Management Architecture

0.4 Andreas Zimmermann

Mark Vinkovits

2011-02-1 LinkSmart Middleware

0.5 Ferry Pramudianto 2011-02-10 Control Management Architecture,

Finalizing the first draft

0.6 Ferry Pramudianto 2011-02-20 Improve the deliverable according to the

comment from IS

1.0 Ferry Pramudianto 2011-02-25 Improve the deliverable according to the

comment from SAP

 Final version submitted to the European

Commission

Internal review history:

Reviewed by Date Summary of comments

Karol Furdik (IS) 2010-02-15 Approved with some comments on

content and structure of sections.

Martin Knechtel (SAP) 2010-02-25 Approved with comments.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 3 of 42 Submission date: 2011-02-28

Table of Contents:

1. Executive summary ... 4

2. Introduction .. 5

2.1 Purpose, context and scope of this deliverable .. 5
2.2 Deliverable Organization ... 5

3. Methodology .. 6

3.1 Software Architecture Design Fundamentals ... 6
3.1.1 Requirements & Architecture ... 6
3.1.2 Viewpoints & Views .. 6

3.2 Software Architecture Design Process ... 6
3.2.1 Architecture Definition Activities .. 6
3.2.2 Viewpoint Catalogue ... 8
3.2.3 Architectural Perspectives ... 9

4. Requirements .. 11

4.1 Functional .. 12
4.1.1 Transparent communication ... 12
4.1.2 Sensor Data Fusion ... 13
4.1.3 Context Awareness ... 13
4.1.4 Information Logging .. 14
4.1.5 Control Management ... 14

4.2 Non functional .. 14
4.2.1 Security ... 14
4.2.2 Performance ... 14

4.3 Stakeholder Analysis ... 14

5. Overview of LinkSmart Functional View .. 16

5.1 Infrastructure .. 17
5.1.1 Overlay P2P connection ... 17
5.1.2 Semantic Services ... 17
5.1.3 Security ... 18
5.1.4 Distributed Storage ... 18

5.2 Sensor & actuator abstraction .. 18
5.2.1 Device classification .. 18
5.2.2 Lightweight web service for D1 ... 20
5.2.3 Sensor & actuator resource management ... 20
5.2.4 Data Acquisition .. 21

5.3 Model Driven Application Development .. 21
5.3.1 Sensor & actuator discovery. .. 21
5.3.2 Application Development.. 21
5.3.3 Context Awareness in LinkSmart ... 22

5.4 Summary and Conclusion .. 26

6. Distributed and Centralized Intelligent Service Architecture 27

6.1 Functional view .. 27
6.1.1 Multi Sensor and Data Fusion Management 28
6.1.2 Context Management .. 30
6.1.3 Control Management ... 33

6.2 Deployment View ... 34
6.2.1 Service Oriented Architecture ... 34

6.3 Summary and Conclusion .. 36

7. Bibliography .. 37

8. Table of Figures ... 38

Appendix A. Complete Requirements of WP-5 .. 39

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 4 of 42 Submission date: 2011-02-28

1. Executive summary

The ebbits project aims to develop architecture, technologies and processes, which allow businesses
to semantically integrate the Internet of Things into mainstream enterprise systems and support
interoperable real-world, on-line end-to-end business applications. It will provide semantic resolution
to the Internet of Things and hence present a new bridge between backend enterprise applications,
people, services and the physical world, using information generated by tags, sensors, and other
devices and performing actions on the real world. Ebbits opens possibilities to offer a wide range of
new business services based on orchestration of physical devices, software services, and people that
are introduced as Internet of People, Thing, and Services (IoPTS).

The ebbits project follows IEEE 1471:"Recommended Practice for Architectural Description of
Software-Intensive Systems" for specifying of the system design and software architecture, which
defines core elements like viewpoint and view. In order to implement and execute this methodology,
we follow the approach introduced by Rozanski and Woods (Rozanski and Woods 2005). Chapter 3
describes the process of the designing architecture in ebbits which is started by defining scope,
engaging stakeholders, capture the first-cut concerns, then define the architecture. Then, the
process to refine the architecture is also explained followed by six viewpoints that are recommended
by Rozanski and Woods. Chapter 4 describes the initial requirements that are related to work
package 5. The requirements are categorized in several categories that can be assigned to the tasks
in WP5. The functional requirements include categories such as Transparent Communication,
Context Awareness, Information and data logging, Multi Sensor Data and Information Fusion. The
non functional requirements include security and performance metrics. Moreover, several
stakeholders were identified including Operators, Technicians, End users of business applications,
Software Developer and Integrators, Regulatory bodies, and Consortium members.

Chapter 5 describes LinkSmart middleware. It provides security, device discovery, semantic
infrastructures, and data acquisition component. Security is provided by encrypting the messages
being exchanged among web services and their consumers, and secondly by policy based access
restriction to web service calls within the LinkSmart network. Several components must be
redesigned to meet ebbits requirements such as context management and data persistence.

Chapter 6 contains the initial system design of distributed and centralized intelligence services which
is discussed from the functional and deployment viewpoints. It provides a layered architecture that
describes the relation of the new components to the LinkSmart architecture as well as to business
applications such as data warehouse, reporting and business intelligence in general. The state of the
art and the proposed architecture models for multi data sensor fusion, context, and control
management are discussed from the functional viewpoint. We propose to follow the JDL model for
processing data acquired from multiple sensors. The JDL model recommends a fusion process that
includes 5 processing levels which process raw signals from multiple sources resulting in a situation
assessment. The accumulated situation over time can be used to infer the context based on the
context models defined by experts. High level context information can be derived from the past,
present and future situations of the environment and the entities in it. This approach enhances
LinkSmart to be more flexible and extensible since a high level context model can be reused and
exchanged between systems. For the control management we propose a proxy based solution that is
able to overcome the synchronization problem between the embedded and the PC world.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 5 of 42 Submission date: 2011-02-28

2. Introduction

The goal of ebbits project is to research and integrate Internet of Things(IoT) technologies in the
business domain. The outcome of ebbits will allow business applications to incorporate physical
objects, services and people into mainstream enterprise systems and support interoperable real-
world, on-line end-to-end business applications. Dealing with a massive amount of heterogeneous
devices and business applications, as envisioned in the IoT, ebbits will use semantic technology that
allows automatic processing of information and autonomous collaboration among devices. Ebbits will
open new possibilities to offer a wide range of new business services based on the orchestration of
physical devices, software services, and people. The ebbits project introduces this as the Internet of
People, Thing, and Services (IoPTS).

2.1 Purpose, context and scope of this deliverable

The purpose of this deliverable is to provide firstly the standard methodology to describe
architectural designs that will be used in work package 5. Secondly, an architecture formalization of
the initial system design within work package 5 will be based on the related requirements that we
have gathered in work package 2. The architecture will initially describe how the main block
components in work package 5 are related to LinkSmart middleware as the foundation of ebbits
development activities and secondly how it is related to applications within the business domain. We
also explain what the functionality of these main blocks (functional view) will be. Furthermore, the
first design of the deployment (deployment view) will be proposed. In the next iterations, more
architectural views will be explained in detail.

2.2 Deliverable Organization

This deliverable is organized as follows:

• Chapter 3 describes the methods and principles applied for software architectural design
that follows standard IEEE 1471:"Recommended Practice for Architectural Description of
Software-Intensive Systems".

• Chapter 4 lists the initial set of functional and non-functional requirements that are related
to work package 5 of the ebbits platform.

• Chapter 5 reviews the LinkSmart Architecture that is related to the work package 5 in order
to analyse the interfaces between the new components.

• Chapter 6 provides an overview of the initial system design of distributed and centralized
intelligence services which will be discussed from the functional and deployment viewpoints.

• Appendix A illustrates the work package 5 initial requirements in a table that follows the
Volere template.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 6 of 42 Submission date: 2011-02-28

3. Methodology

3.1 Software Architecture Design Fundamentals

We have based our process on the standard IEEE 1471 "Recommended Practice for Architectural
Description of Software-Intensive Systems" which defines core elements like viewpoint and view. It
also describes that stakeholders need to be involved and how to apply stakeholders needs to the
architecture. This will be supported by the introduction of "architectural perspectives" which was
introduced by Rozanski and Woods(Rozanski and Woods 2005).

3.1.1 Requirements & Architecture

We have established a process to gather requirements in a structured way as is laid out in
deliverable D2.4 Initial Requirements Report(ebbits-consortium 2010b). For this we have conducted
discussion rounds with focus groups of expert developers which possibly will use the LinkSmart
middleware. The requirements were then prioritized and a fit criterion selected which allows to
measure if a requirement is met or not. We have not only deduced requirements from the focus
group discussions but also from other sources e.g. standards, best practices, each partner´s
experience and so on. In this way we made sure that we collect a broad range of requirements to
reflect the wide range of stakeholders.

Requirements and architecture influence one another. Requirements are an input for the
architectural design process in that they frame the architectural problem and explicitly represent the
stakeholders needs and desires. On the other hand during the architecture design one has to take
into considerations what is possible and look at the requirements from a risk/cost perspective.

3.1.2 Viewpoints & Views

The IEEE 1471 standard defines viewpoint and view as follows:

Definition: Viewpoint and View

A viewpoint is a collection of patterns, templates and conventions for constructing one

type of view. It defines the stakeholders whose concerns are reflected in the viewpoint, and

guidelines and principles and template models for constructing its views.

A view is a representation of all or part of an architecture, from the perspective of one or

more concerns which are held by one or more of its stakeholders.

A viewpoint defines the aims, intended audience, and content of a class of views and defines the
concerns that views of this class will address e.g. Functional viewpoint or Deployment viewpoint.

A view conforms to a viewpoint and so communicates the resolution of a number of concerns (and a
resolution of a concern may be communicated in a number of views).

3.2 Software Architecture Design Process

3.2.1 Architecture Definition Activities

Rozanski and Woods have based the architectural design process on the following definition:

Definition: Architectural Design Process

“Architecture Definition is a process by which stakeholder needs and concerns are captured,

an architecture to meet these needs is designed, and the architecture is clearly and

unambiguously described via an architectural description.” (Rozanski and Woods 2005)

We have to consider a broad set of principles if the architectural design should be of good quality.
We need to engage stakeholders to collect their concerns so the requirements can be balanced if
there are conflicting or incompatible ones. The architectural design must allow for effective
communication between all stakeholders and it must be structured to ensure continuous progress.
Given the complexity of the project the design and also the process have to be flexible so we can
react quickly to changing requirements and environments. Architecture should be technology neutral

ebbits

Document version: 0.0

but in the case of ebbits we have to ensure that it is applicable to a wide range of technologies
the ebbits platform may include

The foundation for our process is the IEEE 1471
by Rozanski and Woods, which is aligned to this standard and shown in:

The process implemented in the ebbits project clearly reflects thi
initial scope and context that we acquired from
scenario development(ebbits
(ebbits-consortium 2010b), and the state of the art analysis that we
(ebbits-consortium 2010a). The stakeholders
needs and desires and capture quality properties that increase the success of
requirements from the discussion rounds together with requirements from other sources are the
input for the current architect
description (AD). Based on this architectural description, the first prototype has been created, which
can be seen as a proof of concept
from these development efforts constitute a valuable source for the derivation of additional
requirements and the revision of already existing ones. The following diagram reflects the details of
the process:

 D5.2.1 Architecture for intelligence integration

 Page 7 of 42 Submission date:

but in the case of ebbits we have to ensure that it is applicable to a wide range of technologies
the ebbits platform may include.

The foundation for our process is the IEEE 1471 standard and we have used the process proposed
by Rozanski and Woods, which is aligned to this standard and shown in:

Figure 1: Architecture Definition Activities

The process implemented in the ebbits project clearly reflects this approach. We started with the
that we acquired from the involvement of stakeholders in the process of the

(ebbits-consortium 2010c)), the subsequent requirements process
, and the state of the art analysis that we have documented in D5.1.1
. The stakeholders or their representatives were included to express their

needs and desires and capture quality properties that increase the success of
requirements from the discussion rounds together with requirements from other sources are the
input for the current architecture design phase where we create a first draft of the architectural
description (AD). Based on this architectural description, the first prototype has been created, which

proof of concept system with minimal functionality on top. The exper
from these development efforts constitute a valuable source for the derivation of additional
requirements and the revision of already existing ones. The following diagram reflects the details of

D5.2.1 Architecture for intelligence integration

Submission date: 2011-02-28

but in the case of ebbits we have to ensure that it is applicable to a wide range of technologies that

standard and we have used the process proposed

s approach. We started with the
the involvement of stakeholders in the process of the

the subsequent requirements process in WP2
documented in D5.1.1

ere included to express their
needs and desires and capture quality properties that increase the success of ebbits platform. Those
requirements from the discussion rounds together with requirements from other sources are the

ure design phase where we create a first draft of the architectural
description (AD). Based on this architectural description, the first prototype has been created, which

system with minimal functionality on top. The experiences gained
from these development efforts constitute a valuable source for the derivation of additional
requirements and the revision of already existing ones. The following diagram reflects the details of

ebbits

Document version: 0.0

Steps 1 and 2 are reflected in the requirements process and steps 3 and 4 were basically defined by
the DOW. In the DOW we have decided to implement a middleware based on a service
architecture (SOA) through the use of Web Services. With this as a framework the candidate
architecture was set so we would only chose another architectural style if we would face
insurmountable problems which are

The steps 5 to 7 (A and B) reflect our iterativ
checking back with the stakeholders if the architecture meets their needs. After this iteration cycle
the next steps of implementation and testing the revised architecture will follow but are not scope
this document.

3.2.2 Viewpoint Catalogue

The viewpoint catalogue proposed by Rozanski and Woods contains the following viewpoints:

Functional: The system´s functional elements, their responsibilities and primary
interactions with other elements will be desc

 D5.2.1 Architecture for intelligence integration

 Page 8 of 42 Submission date:

Figure 2: Architecture Definition Activities Details

Steps 1 and 2 are reflected in the requirements process and steps 3 and 4 were basically defined by
the DOW. In the DOW we have decided to implement a middleware based on a service

hrough the use of Web Services. With this as a framework the candidate
architecture was set so we would only chose another architectural style if we would face
insurmountable problems which are very unlikely.

The steps 5 to 7 (A and B) reflect our iterative approach on constantly refining the architecture and
checking back with the stakeholders if the architecture meets their needs. After this iteration cycle
the next steps of implementation and testing the revised architecture will follow but are not scope

The viewpoint catalogue proposed by Rozanski and Woods contains the following viewpoints:

The system´s functional elements, their responsibilities and primary
interactions with other elements will be described. This is usually the most important

D5.2.1 Architecture for intelligence integration

Submission date: 2011-02-28

Steps 1 and 2 are reflected in the requirements process and steps 3 and 4 were basically defined by
the DOW. In the DOW we have decided to implement a middleware based on a service-oriented

hrough the use of Web Services. With this as a framework the candidate
architecture was set so we would only chose another architectural style if we would face

e approach on constantly refining the architecture and
checking back with the stakeholders if the architecture meets their needs. After this iteration cycle
the next steps of implementation and testing the revised architecture will follow but are not scope of

The viewpoint catalogue proposed by Rozanski and Woods contains the following viewpoints:

The system´s functional elements, their responsibilities and primary
ribed. This is usually the most important

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 9 of 42 Submission date: 2011-02-28

viewpoint as it reflects the quality properties of the system and influences the
maintainability, the extensibility and the performance of the system.

Information: Describes the way that information is stored, managed and distributed in the
architecture.

Concurrency: Describes the concurrency structure of the system and identifies
components that can be executed concurrently and how this is coordinated and controlled.

Development: Describes how the architecture supports the development process.

Deployment: Describes the environment that the system will be deployed into and also
documents the hardware requirements for the components and the mapping of the
components to the runtime environment that will execute them.

Operational: Describes how the system will be operated, administered and supported
while it is running and strategies and conflict resolutions will be documented here.

The following diagram shows how the views relate to each other.

Figure 3: Viewpoint Catalogue

During the course of the project this document will be continuously and successively extended

by additional views.

3.2.3 Architectural Perspectives

The term “Architectural Perspectives” was coined by Rozanski and Woods.

Definition: Architectural Perspective

“An architectural perspective is a collection of activities, checklists, tactics

and guidelines to guide the process of ensuring that a system exhibits a

particular set of closely related quality properties that require consideration

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 10 of 42 Submission date: 2011-02-28

across a number of the system’s architectural views.” (Rozanski and Woods

2005)

The architectural perspectives ensure that quality properties are not forgotten in the process
because the viewpoint and view approach per se does not explicitly consider those quality
properties. But those properties are critical to the success of the project and to reflect them properly
one usually needs cross-view considerations while the viewpoints are relatively independent.

Rozanski and Woods propose the perspectives on security, performance, availability, maintenance,
location, regulation etc. Not all combinations of perspectives and views are needed and artefacts
created according to those perspective/view combinations need to be carefully chosen. The
perspectives and the combination possibilities with views that Rozanski and Woods propose are
shown in the following diagram:

Figure 4: Architectural Perspectives and Views

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 11 of 42 Submission date: 2011-02-28

4. Requirements

The purpose of this section is to provide top-level user requirements of future use of the ebbits
platform that are related to work package 5 in the two selected areas, Automotive Manufacturing
and Food Traceability. During the initial discussions of the project objectives and the work plan we
decided to take a slightly different approach to the Scenario Thinking method for the first iteration.
We interviewed the user partners as experts in their field and building the vision scenario workshops
around them, rather than involving external experts. It was agreed that the proposed business
applications are sufficiently anchored in the present to make this process adaptation viable. To
further benefit and expedite the requirements elicitation process it was agreed to organize combined
Scenario Workshop/Focus Group sessions involving user partners as well as developer partners. The
detail methodology and requirements are documented in the D2.4 Initial Requirements Report.

The requirements related to WP5 are clustered in several categories that correspond to the tasks in
WP5. These clusters have been introduced in D2.4(ebbits-consortium 2010b) and now have again
been improved to meet the objectives of WP5 in general. The functional requirements include (the
ids of the requirements have been updated in the GForge database due to data migration at the
beginning of the project):

• Transparent Communication

o #93 bring data from Fieldbus network to Ethernet network (#65 in D2.4)

o #44 Farmers are able to retrieve optimized models from research (#19 in D2.4)

o #27 Product-related information should be represented in a machine-readable

format (#6 in D2.4)

o #45 System can feed the farms data to research(#20in D2.4)

o #130 Item identification system should provide open interfaces to other systems

(#81 in D2.4)

• Context Awareness

o #134 Ability to self-adaptation (#85 in D2.4)

o #157 Different Views on the Data is necessary (#108 in D2.4)

o #139 Support runtime reconfiguration(#90 in D2.4)

o #49 Access to energy-related information from production machines needs to be

provided. (#23 in D2.4)

o #47 Resilience and adaptable to environment condition changes(#22 in D2.4)

o #75 System should aware of what which livestock are in the building(#47 in D2.4)

o #81 System should show Energy Cost for different granularity of production

processes(#53 in D2.4)

o #103 automatic calibration(#66 in D2.4)

• Information and data logging

o #159 End-users need to be able to manage their distributed data(#110 in D2.4)

o #64 Logging of Quality related information of each Manufacturing Part(#37 in D2.4)

o #39 Retrieve manufacturing data history of any relevant event during

production(#14 in D2.4)

• Control Management

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 12 of 42 Submission date: 2011-02-28

o #36 Controlling of machines/stations in manufacturing plant remotely(#11 in D2.4)

o #135 Protection of System Integrity(#86 in D2.4)

• Multi Sensor Data Fusion

o #141 Report errors in devices(#96 in D2.4)

o #155 Synchronization of Acquired Data is necessary(#106 in D2.4)

o #91 filter/fusion information for each operational process(#63 in D2.4)

o #92 early maintenance notification when needed(#64 in D2.4)

o #66 correlate problems found with production batches(#39 in D2.4)

o #35 Hazardous Environmental Monitoring of Manufacturing Plant(#10 in D2.4)

o #50 Filtering to Obtain relevant Information(#24 in D2.4)

o #43 Aggregating collected sensor data at a central point(#18 in D2.4)

o #131 Support fuzzy or probability concepts for reasoning(#82 in D2.4)

o #67 automatic analysis of cross enterprises product life cycle data(#40 in D2.4)

o #78 system should provide location tracking of the stocks/livestocks(#50 in D2.4)

o #79 location tracking should be implemented as independent app(#51 in D2.4)

o #154 Aggregate data from various data bases and sources(#105 in D2.4)

o #109 recognition of energy wasting behaviours(#72 in D2.4)

The non-functional requirements include:

• Security and Privacy

o #82 Protection to sensitive information(#54 in D2.4)

o #72 officials have a back door access to highly important information(#45 in D2.4)

• Performance

o #140 Transparency of device performance(#91 in D2.4)

o #138 Distributed Intelligence should not lead to resource-heavy systems(#89 in

D2.4)

4.1 Functional

Some of these requirements are shared with other work packages as well as have been covered by
LinkSmart middleware that is presented in section 5.

4.1.1 Transparent communication

Transparent communication requires a component that is able to deliver data and information that
can be understood by another machine. This also requires a dissemination strategy that involves
inter-enterprise communication as envisioned by the traceability scenario in ebbits. In the
manufacturing scenario, the communication will also involve several manufacturing sites that are
connected through virtual private network within the internet. The communication among several
enterprises and manufacturing sites involves different systems and data formats that are influenced
proprietary formats, culture and localization.

Heterogeneity of the communication protocols is covered by the use of standard WS-I web services1
in an service oriented architecture of LinkSmart. The integration of physical world sensor and

1 to http://www.ws-i.org

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 13 of 42 Submission date: 2011-02-28

actuators into the ebbits platform will also be covered in WP-8. WP-5 is then responsible to filter and
transform the data that comes out from the network layer and going into the application. The
transformation and filtering will be initially done in the multi sensor fusion components aiming at
delivering a higher quality of information. The sensor fusion components will achieve sensor
readings with higher degree of confidence. These sensor readings can be disseminated directly to
interested application for offline analysis purposes.

This cluster of requirements recapitulates the requirement: #27, #44, #45, #93, #130

4.1.2 Sensor Data Fusion

Decision making process must be supported by the decision makers’ awareness of the current
situation. Situation awareness can be augmented by providing users with meaningful information
from the existing data. This transformation process from sensor data into meaningful information is
known as sensor data fusion.

Data fusion also influences the means how the sensed data is transformed into useful information
for the users in order to increase the situation awareness. On the other hand, data fusion will also
be used by the context aware applications to infer the action needed in a context of the current
situation.

In the requirement elicitation processes, the users mentioned that they want to optimize the energy
consumption within the production area and improve accuracy and time needed for the traceability
of food. Thus in production area, data such as the energy consumption, operational processes,
production material, as well as In food traceability, data such as ingredients of livestock’s feed,
medical history of the livestock, meat quality, breeding data, and regulations must be fused and
presented to the users to support them in taking decisions.

Another requirement that is a classic problem of sensor fusion application is an indoor location
tracking. In the manufacturing scenario, Comau revealed that the locations of goods being used are
not yet always known as they are not tracked electronically. This problem is also found in farms, as
pigs are let loose in a farm building, the farmers cannot identify the pigs individually anymore.
Although they use markers, the marks can dissolve over time therefore the farmers would like to
have an electronic tracking to monitor the position of specific pig.

This cluster of requirements constitutes the requirement: #35, #36, #43, #50, #66, #67, #78,
#79, #92, #109, #131, #141, #154.

4.1.3 Context Awareness

The users that we interviewed stated that information should be aggregated and personalized
according to the users or user profiles since each stakeholder may require different kind of
information as well as different level of detail. This is highly desired to avoid users being
overwhelmed by irrelevant data.

Although, the presentation of the information to the users is out of scope of WP-5 since this would
be covered by the human computer interface components such as industrial HMI module, ERP
System, etc. However, the preparation of the information from the raw data is very much relevant
for the goal of WP-5. Therefore the components in WP-5 must be able to aggregate data from
distributed sources and prepare the require information. Data preparation in different level of the
network can distribute the workload to different nodes and avoid a single point of failure.

The Self-management requirements can take advantage of the context awareness to react to any
mal functions that are detected. Self-management aims at minimizing maintenance costs as much as
possible by letting the systems take care of themselves. Most of the calibration and maintenance are
now done manually by technicians that consumes some time which in turn will costs some losses in
the production. Self-management includes self-configuration, self-adaptation, self-diagnosis, and
self-protection. This requires a continuous monitoring for self-diagnosing the system conditions and
state, in order to detect errors log device events.

This cluster of requirements constitutes the requirement: #47, #49, #75 #81, #103, #134, #139,
#157.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 14 of 42 Submission date: 2011-02-28

4.1.4 Information Logging

Data that is produced by sensors in production domain must be logged for different reasons - for
instance for process optimization, data are analyzed offline and when problem is identified, data is
analyzed to trace the source of the problem and the affected products. So far massive amounts of
sensor data are logged in a database with a static entity model. This approach raises problem when
data must be aggregated with another system, therefore we will enhance the information logging
technique using semantic technology. This will allow any data structure mismatch be semantically
resolved.

This cluster of requirements constitutes the requirement: #39, #64, #159.

4.1.5 Control Management

The current situation of control management in manufacturing and farms is automated, and the
users can control and configure the automated processes. The users would like to keep automated
processes with minimum maintenance effort as described in 4.1.3 and also have a possibility to
configure the control remotely through wireless devices.

This cluster of requirements constitutes the requirement: #36.

4.2 Non functional

4.2.1 Security

Since data is shared among enterprise, everyone should be able to protect their data and able to
control what they want to share. The users must be able to define policy and rules in order to grant
and restrict access to their data. They also need to be sure that the security mechanism is reliable
and guaranteed because otherwise they will have doubts to share their data.

This cluster of requirements constitutes the requirement: #72, #82, #135.

4.2.2 Performance

In terms of performance, the users requested that the system should be responsive and able to
handle a large number of data in an acceptable amount of time. The users would also like to have a
constant feedback when the system is processing something, so they can be sure that it is working.

This cluster of requirements constitutes the requirement: #138, #140.

4.3 Stakeholder Analysis

For the definition of requirements traditionally the user was taken as a reference. One could argue
what exactly the term user includes but it is obvious that not only the requirements of the user have
to be analyzed. The software has to be developed, run, administered, maintained, and monitored; in
parallel, it needs to abide to certain standards or regulations. Each of these aspects is of interest to
different people which not necessarily are using the system at all. We refer to these groups of
people as stakeholders. We use the following definition (taken from IEEE 1471):

Stakeholder: An individual, team, or organization (or classes thereof) with interests in, or concerns

relative to, a system.

From ebbits scenarios and use cases, we identified the following Stakeholders:

• Operators

Operators are people whose job is to operate the machining and equipments on the
production lines, farms, shop floors. Their main activity is to start up and shut off the shop
floor, supervise any automation components and report to the technicians if there is
malfunction, and supervise any events that could violate the safety protocols.

• Technicians

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 15 of 42 Submission date: 2011-02-28

The technicians are people who maintain the running systems in manufacturing sites,
production lines, and farms. They are responsible to monitor and repair any malfunctions
that happen on site. Their main activities include calibrating system parameters, design and
deliver diagnostic logging mechanisms as well as and analyze the logged information.

• End users of business applications

This stakeholder type includes people who are working in the management levels and use
enterprise resource planning software on their daily activities.

• Software Developer and Integrators

These are people that develop software (on ebbits) to integrate data and information of any
entities on the shop floor and farms into manufacturing execution systems and enterprise
resource planning systems.

• Regulatory bodies

These are people who make regulations nationwide, EU-wide for industry procedures and
safety in order to protect the end consumers. Any new regulation could influence the
running operational procedures within the enterprise.

• Consortium members

The consortium members consist of several types, firstly the researchers within ebbits
consortium who would like to explore state-of-the-art technology for ebbits purposes as well
as for their exploitations. Secondly, the domain partners who want to exploit ebbits for their
business.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 16 of 42 Submission date: 2011-02-28

5. Overview of LinkSmart Functional View

In this overview, only the functional view of the LinkSmart middleware and the WP5 related
components are discussed so that the missing functionalities that we may need in WP5 can be
identified. Further views will be discussed in the next iterations of this deliverable as different views
of ebbits architecture will be defined. Figure 5 shows the functional view of LinkSmart middleware
and its relation to the physical communication layer and applications built on top of LinkSmart
middleware. The concept of middleware in distributed systems is often taken to mean “the software
layer that lies between the operating system and the applications on each side of the system”
(Krakowiak 2003). Another characterization in terms of the ISO OSI stack (Day and Zimmermann
1983) is that middleware provides protocols that run on top of the transport layer and provide
services to the application layer (Tanenbaum 2008).

LinkSmart as a middleware framework (Formerly known as Hydra (Eisenhauer, Rosengren et al.
2009)) defines an abstraction layer on top of heterogeneous communication protocols. It provides
services to application developers, hiding the complexity of underlying device specifics. In LinkSmart,
service interfaces are decoupled from the network protocol. For instance, LinkSmart utilizes OSGi
Service Platform for local calls between Java-based modules and for remote calls SOAP over various
network protocols such as HTTP, UDP, and Bluetooth.

Figure 5: LinkSmart middleware architecture

Components inside the dotted square comprise the middleware. This figure clearly visualizes that
LinkSmart is located between the physical communication layer and the application layer. What we

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 17 of 42 Submission date: 2011-02-28

meant by physical layer in this sense is any means of communication protocols that can be
abstracted by LinkSmart.

The middleware architecture follows strictly a service-oriented and component-based design
adhering to the principles of loose coupling and separation of concerns. Figure 5 shows that
LinkSmart consists of several components called managers. Each manager encapsulates a set of
operations and data that realize a well-defined functionality. Thus, LinkSmart offers a large collection
of reusable basic software components to application developers. While certain managers are
mandatory, other ones may be used depending on the application’s requirements. LinkSmart’s
component-based approach facilitates the development of scalable applications by plugging in
certain functionality only when it needed. For example, the Network Manager is a mandatory
component in any LinkSmart application but Context or Self* Managers are optional.

The LinkSmart SoA is implemented with WS-I (WS-I 2006) conformed Web Services based on either
Java or .Net providing interoperability among different systems and platforms. Java based
components make use of the OSGi2 service platform as it represents a comprehensive framework for
the development of modular and extensible applications.

Besides such architectural considerations, LinkSmart introduces the distinction of device developers
and application developers allowing developers to best apply their expertise to specific tasks in
pervasive application development. A device developer is responsible for connecting any kind of
networked device to the LinkSmart middleware, exposing its functionalities as LinkSmart conformant
services (see Section 5.2). Once integrated, the application developer can then transparently employ
this device in his LinkSmart application (see Section 5.3.2).

5.1 Infrastructure

5.1.1 Overlay P2P connection

LinkSmart facilitates communication among devices via a P2P overlay network that is based on
JXTA3. The basic LinkSmart component enabling network communication is the Network Manager. It
is the incoming and outgoing point of information in a LinkSmart network. The network manager is
not a centralized component in the network topology, in contrast it is deployed on any capable
device (see Section 5.2.2). It implements SOAP Tunneling(Lardies et al. 2009) as Web Service
transport mechanism, which allows LinkSmart devices to communicate securely even through
firewalls or NATs. SOAP Tunneling decouples web services from physical addresses such as IP
address. To the client application, all requested services seem to run local, though the network
manager handles to reroute service invocations to the real physical address, where the actual
service runs.

Inside a LinkSmart network, unique LinkSmart IDs (HIDs) identify all devices and services. Each
Network Manager keeps a hash map mapping all available HIDs to their respective physical address.
In order to deal with services that occur after disappearing due to changing locations or connection
errors this hash map needs regularly an update.. All communication that happens between devices
has to go through the respective Network Managers and SOAP Tunnels to reach its destination.

Applying such a comprehensive communication approach brings with it several advantages: A
pervasive distributed network infrastructure allows for efficient resource sharing, fault tolerance
when nodes break down, and ubiquitous access to the network.

The benefit of using JTXA is gaining platform independency and interoperability among different
network protocols. Further, it provides support for state-of-the-art security concepts in P2P networks
like authentication, authorization and integrity.

5.1.2 Semantic Services

One of the key components in the LinkSmart middleware is the device ontology. This ontology stores
all information and knowledge regarding devices and device classes. The Device Ontology models

2 http://www.osgi.org/
3 https://jxta.dev.java.net/

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 18 of 42 Submission date: 2011-02-28

specific features of devices such as: hard- and software capabilities of a device, device’s services and
events, device’s state-machines, device’s security capabilities, Quality-of-Service properties, and
device’s discovery information. After devices have been discovered, the relevant information can be
obtained from the Discovery Manager. The Discovery Manager uses UPnP profile4 to advertise device
description as well as their events. Alternatively, Discovery Manager also uses SAWSDL5 and WSDL6
for describing web services that do not relate to any device.

One of the basic features of knowledge models comprises the ability to answer the queries. The
Ontology Manager provides specific querying functionality accessible from specific Web-Service
methods. The queries must be formulated in SPARQL7. The Ontology Manager also implements a
general interface, which enables developers to retrieve the result for any SPARQL query.

5.1.3 Security

SOAP messages exchanged between network managers are encrypted using an asymmetric security
functionality that requires keys and certificates. These are stored in a java keystore8 of each Network
Manager and protected by passwords. Before a secure message is going to be exchanged, the
certificates between these two managers have to be shared among the entities. Then, in order to
verify a certificate or key of a Network Manager, the module uses aliases, which correspond to the
HIDs of Network Managers that the messages are sent to and retrieved from. When a message
needs to be verified or encrypted, the sender (encryption) or receiver (verification) uses the public
key of a specified manager. Figure 6 shows how the secure data is sent via the involved managers:

Figure 6: LinkSmart's secured message transmission

LinkSmart also provides a set of cryptographic algorithms that can be used by application developers
to secure the context information going through the middleware (Hoffmann et al. 2007).

5.1.4 Distributed Storage

LinkSmart allows components to store data remotely. The Storage Manager is responsible for
providing the interface that allows devices and application store and retrieve data and files in volatile
as well as persistence storage. The Storage Manager provides different storage quality and with
different performance as well as security requirements. For instance, Intermediate data might be
stored without additional redundancy. In contrast, sensitive data might be stored inside a reliable
storage array or has to be distributed redundantly over multiple disks. Accessing remote storage
devices from a resource-constrained device introduces increased response times. Hence, the Storage
Manager has to be able to compensate the storage variety. The Storage Manager also provides
different levels of security in order to secure sensitive data. For instance, small data can be
encrypted before it is stored. On the other hand, encrypting large data might slow down the system
performance. Thus, this kind of data will be scattered over multiple physical storage, while their
security is guaranteed by applying internal HW-Seeds in the used hash-functions.

5.2 Sensor & actuator abstraction

5.2.1 Device classification

Before an application developer can start building a system of interconnected heterogeneous devices
with LinkSmart, s/he must have service level access to these devices. Typically sensors and
actuators neither are capable of offering extensively interoperable service interfaces nor do they

4 http://upnp.org/sdcps-and-certification/standards/sdcps/
5 http://www.w3.org/2002/ws/sawsdl/
6 http://www.w3.org/TR/wsdl
7 http://www.w3.org/TR/rdf-sparql-query/
8 This class represents a storage facility for cryptographic keys and certificates.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 19 of 42 Submission date: 2011-02-28

usually communicate over commonly used protocols. This is where the device developer comes into
play. He is responsible for developing a software proxy that acts as a bridge between the device’s
communication protocol and the LinkSmart network. Such a proxy’s job is twofold: Downward, it has
to understand the device’s communication technology and the format of the data exchanged.
Upward, towards the LinkSmart network, it has to provide the translated device functionalities as
Web Services.

LinkSmart as a generic middleware aims at allowing developers to integrate a wide range of
different devices, from sensors over mobile phones to powerful computers. To provide a better
overview over devices and their capabilities LinkSmart introduces device classifications concerning a
device’s network capabilities and the possibility to deploy parts of the LinkSmart middleware on that
device. Resulting from this classification and the goal to deploy LinkSmart on as many device classes
as possible, we also describe an approach to enable lightweight web services for less powerful
devices.

The LinkSmart network architecture is based on IP networks with the communication scheme based
on Web Service calls. If a device’s communication protocol does not implement the IP layer, it will
need means to be integrated in the LinkSmart network. The way this is done depends on the
device’s capability to host LinkSmart components. For this LinkSmart identifies the following device
classes:

D0 devices are not able to host the minimally required subset of the LinkSmart middleware and do
not support IP communication. Thus, they need a proxy running on a more powerful device to
manage the communication and data transfer of the D0 device and expose its functionality as a Web
Service. D0 devices are typically legacy devices with very limited power in terms of processor and
memory using communication protocols like Bluetooth9, ZigBee10, IrDA11 or Serial RS-232 among
others. Sensors and actuators are D0 devices.

D1 devices cannot host the LinkSmart middleware but do implement IP communication and are
suitable for running embedded Web Services. PDAs and mobile phones are examples of D1 devices.

D2 devices can host the LinkSmart middleware but do not implement IP communication. Thus,
communication needs to be bridged by a device that is capable of IP. Some PDAs are examples of
D2 devices.

D3 devices are able to host the LinkSmart middleware and provide IP support. Examples of D3
devices are powerful mobile phones, personal computer or laptops.

D4 devices are D3 devices that host proxies for D0 and D1 devices.

9 https://www.bluetooth.org
10 http://www.zigbee.org
11 http://www.irda.org/

ebbits

Document version: 0.0

Figure

Figure 7 shows a decision flowchart to help developers decide how they should develop a LinkSmart
device. First, we have to check whether the device can host the LinkSmart middleware or not. If the
device is not powerful enough, it is a
has IP communication capabilities, it is a D1 device. Otherwise, it is a D0 device. On the other hand,
if the device can host the middleware, we have to check if the device in question supports I
communication. If the answer is negative, we have a D2 device. If the answer is positive and the
device can control D0 and D1 devices in the system, we have a D4. Otherwise, it is a D3 device.

5.2.2 Lightweight web service for D1

Devices from class D1 lack the
environments. Nevertheless, such devices are programmable and support IP
hence they are basically able to run embedded Web Services. LinkSmart introduces ServiceCompiler
(Hansen et al. 2008), a Java
different target platforms and protocols. Currently ServiceCompiler supports J2SE and J2ME
platforms and implements SOAP communication over TCP, UDP or Bluetooth. Serv
integrates itself perfectly in LinkSmart’s model driven development approach, as it utilizes semantic
information provided by the device ontology to generate the respective services. Besides Web
Services that allow a device to communicate insid
generates UPnP service code, enabling a device to be discovered inside the network.

ServiceCompiler eases the task of device developer to integrate devices into LinkSmart network.

5.2.3 Sensor & actuator resource

Resource management is one of the most important factors for wireless sensor nodes. LinkSmart
assumes that processor and memory resources will be maintained by an operating system running
on the nodes. However, LinkSmart supports energy managem
an energy service, which allows applications to receive information on energy consumption and to
enforce energy usage policies (e.g.: scheduling when the device should be put on sleep, wake up
and standby). In order to coordinate global energy consumption, the energy policy monitor
interprets energy policies and executes a set of services depending on the respective policy. Devices
can be selected by explicitly referring to name/id or by selecting criteria expressed over
profiles and other device descriptions in the device ontology. Various run
restrictions can be applied to the rules, for instance a specification of thresholds for overall
consumption per group or for subsets of devices, and t

 D5.2.1 Architecture for intelligence integration

 Page 20 of 42 Submission date:

Figure 7: Device Classification Decision Flow Chart

shows a decision flowchart to help developers decide how they should develop a LinkSmart
device. First, we have to check whether the device can host the LinkSmart middleware or not. If the
device is not powerful enough, it is a D0 or a D1 device. If the device can host a web service and
has IP communication capabilities, it is a D1 device. Otherwise, it is a D0 device. On the other hand,
if the device can host the middleware, we have to check if the device in question supports I
communication. If the answer is negative, we have a D2 device. If the answer is positive and the
device can control D0 and D1 devices in the system, we have a D4. Otherwise, it is a D3 device.

Lightweight web service for D1

Devices from class D1 lack the ability to host the LinkSmart middleware inside OSGi or .NET
environments. Nevertheless, such devices are programmable and support IP-
hence they are basically able to run embedded Web Services. LinkSmart introduces ServiceCompiler

nsen et al. 2008), a Java-based web service compiler that generates web service code for
different target platforms and protocols. Currently ServiceCompiler supports J2SE and J2ME
platforms and implements SOAP communication over TCP, UDP or Bluetooth. Serv
integrates itself perfectly in LinkSmart’s model driven development approach, as it utilizes semantic
information provided by the device ontology to generate the respective services. Besides Web
Services that allow a device to communicate inside a LinkSmart network, ServiceCompiler also
generates UPnP service code, enabling a device to be discovered inside the network.

ServiceCompiler eases the task of device developer to integrate devices into LinkSmart network.

Sensor & actuator resource management

Resource management is one of the most important factors for wireless sensor nodes. LinkSmart
assumes that processor and memory resources will be maintained by an operating system running
on the nodes. However, LinkSmart supports energy management. Each LinkSmart device provides
an energy service, which allows applications to receive information on energy consumption and to
enforce energy usage policies (e.g.: scheduling when the device should be put on sleep, wake up

oordinate global energy consumption, the energy policy monitor
interprets energy policies and executes a set of services depending on the respective policy. Devices
can be selected by explicitly referring to name/id or by selecting criteria expressed over
profiles and other device descriptions in the device ontology. Various run-time consumption
restrictions can be applied to the rules, for instance a specification of thresholds for overall
consumption per group or for subsets of devices, and the actions taken such as disabling devices.

D5.2.1 Architecture for intelligence integration

Submission date: 2011-02-28

shows a decision flowchart to help developers decide how they should develop a LinkSmart
device. First, we have to check whether the device can host the LinkSmart middleware or not. If the

D0 or a D1 device. If the device can host a web service and
has IP communication capabilities, it is a D1 device. Otherwise, it is a D0 device. On the other hand,
if the device can host the middleware, we have to check if the device in question supports IP
communication. If the answer is negative, we have a D2 device. If the answer is positive and the
device can control D0 and D1 devices in the system, we have a D4. Otherwise, it is a D3 device.

ability to host the LinkSmart middleware inside OSGi or .NET
-based communication,

hence they are basically able to run embedded Web Services. LinkSmart introduces ServiceCompiler
based web service compiler that generates web service code for

different target platforms and protocols. Currently ServiceCompiler supports J2SE and J2ME
platforms and implements SOAP communication over TCP, UDP or Bluetooth. ServiceCompiler
integrates itself perfectly in LinkSmart’s model driven development approach, as it utilizes semantic
information provided by the device ontology to generate the respective services. Besides Web

e a LinkSmart network, ServiceCompiler also
generates UPnP service code, enabling a device to be discovered inside the network.

ServiceCompiler eases the task of device developer to integrate devices into LinkSmart network.

Resource management is one of the most important factors for wireless sensor nodes. LinkSmart
assumes that processor and memory resources will be maintained by an operating system running

ent. Each LinkSmart device provides
an energy service, which allows applications to receive information on energy consumption and to
enforce energy usage policies (e.g.: scheduling when the device should be put on sleep, wake up

oordinate global energy consumption, the energy policy monitor
interprets energy policies and executes a set of services depending on the respective policy. Devices
can be selected by explicitly referring to name/id or by selecting criteria expressed over their energy

time consumption
restrictions can be applied to the rules, for instance a specification of thresholds for overall

he actions taken such as disabling devices.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 21 of 42 Submission date: 2011-02-28

5.2.4 Data Acquisition

Data acquisition in LinkSmart is responsible to serve several purposes. For instance, delivering
sensed data and its characteristic such as unit and precision, hardware and software resource data,
platform information, user profiles and preferences, security data and state status.

Information from sensor nodes can either be pushed to the application or polled by the application.
LinkSmart provides both of the methods via the Event Manager and the Data Acquisition
Component. The application can use one method exclusively or combine both methods depending
on the application context. For instance, if the application requires collecting samples every interval
of time, the Data Acquisition Component should be used to poll the information out of the sensor
network. When an application only has an interest to be informed about specific events that it
registered on, while it does not occur very often, e.g. for energy saving reasons, it should only use
event-based method.

Since sensed data can be unreliable caused by environment condition, LinkSmart allows developers
to define a plausibility check through regular expressions. Plausibility check discards abnormal values
when defined by the developers. For instance, if developers defined that the possible value for a
room temperature is between -15 to 100 degrees Celsius, when a sensor delivers a value of 200
degrees, it will be discarded.

5.3 Model Driven Application Development

5.3.1 Sensor & actuator discovery.

Discovering available devices in the network is important during development and at runtime.
Nevertheless, heterogeneous discovery protocols in an application are hard to maintain. Thus, in
order to have a uniform discovery mechanism that is transparent to the application, LinkSmart uses
two-level discovery. The first level discovers devices and services in the local network that are only
detectable by their specific discovery protocols (e.g.: Bluetooth, ZigBee, WS-Discovery). After the
first level is completed, LinkSmart tries to assign a classification to each device by matching the
information that has been obtained from their native discovery protocol with information stored in
the Ontology Manager. When a closest class of a device has been found, LinkSmart generates an
UPnP proxy for the corresponding device. The second level of the discovery protocol tries to find any
UPnP device in the local network, which carries a LinkSmart signature. When necessary, Discovery
Managers in the same LinkSmart network communicate with each other to exchange a list of
devices, thus devices connected to other gateways, regardless of their physical locations, can still be
detected by any application connected to the same LinkSmart network. We also consider using WS-
Discovery for the second level discovery in the future since it has become a standard for discovering
Web Services.

5.3.2 Application Development

An advantage of LinkSmart middleware is that the managers were designed to be able to work in
distributed manner. LinkSmart components themselves operate inside a service oriented architecture
system that uses Web Services to communicate to among them. The managers are also able to
communicate directly to each other in an OSGi environment, which eliminates the communication
overhead caused by SOAP messages. This allows components to be either locally as well as in a
distributed manner. For instance, the Quality-of-Service Manager is deployable in the same OSGi
environment as the application, or can run on an independent server running on the network that is
accessible via web services.

LinkSmart takes advantage of semantic web services, which makes it possible for application
developers to address devices in an abstract manner, which decouples the application logic from any
specific device. This allows devices being replaced during runtime. As depicted in

Figure 8, the middleware provides an application programming interface for the application
developers that is called Application Service Manager whose main functions are: (i) to provide a
service query interface for the application, (ii) to discover requested services, and (iii) to execute
orchestrated services. The Application Service Manager uses an Ontology Manager to get semantic

ebbits

Document version: 0.0

information about services that it has found and uses the
services on these devices. The
network, by gathering information about devices that have been found on gateways or sinks by from
Discovery Manager. Discovery Manager

Discovering a device can be initiated from an application by execut
Application Service Manager

the nearest gateway. The nearest gateway forwards the request throughout the overlay network. In
addition, an application may inv
services that fulfill specific requirements to a certain extent.

To assure the quality of information that goes to the application, LinkSmart provides a Quality of
Service (QoS) Manager that allows application developers to select services based on specific QoS
parameters. These QoS parameters are extensible and modeled
network related parameters (e.g.: bandwidth, latency), resource related parameters (e.g.: power
consumption, energy level, memory, processor), multimedia relevant parameters (e.g.: sound level,
resolution, contrast, color). A
LinkSmart ontology, an application is able to query the QoS Manager for services that fulfill certain
parameters to a certain extent.

5.3.3 Context Awareness in LinkSmart

The subject ‘context awaren
almost anyway. In order to simplify the use but not the potential for the LinkSmart developer/user
the idea of context awareness and all its side meanings are joined in only a few compone
can be used in a very powerful way. From the
want to achieve with a Context Awareness Framework is to make an application

 D5.2.1 Architecture for intelligence integration

 Page 22 of 42 Submission date:

information about services that it has found and uses the Application Device Manager
services on these devices. The Application Device Manager retrieves services from devices on the

by gathering information about devices that have been found on gateways or sinks by from
Discovery Manager. Discovery Manager maintains this information in a Device Application Catalogue
Discovering a device can be initiated from an application by executing services provided by the
Application Service Manager, which is then being propagated by the Application Device Manager
the nearest gateway. The nearest gateway forwards the request throughout the overlay network. In
addition, an application may invoke the QoS Manager for performing a matching over a set of
services that fulfill specific requirements to a certain extent.

Figure 8: API for Application Development.

To assure the quality of information that goes to the application, LinkSmart provides a Quality of
Service (QoS) Manager that allows application developers to select services based on specific QoS
parameters. These QoS parameters are extensible and modeled in an ontology, for instance:
network related parameters (e.g.: bandwidth, latency), resource related parameters (e.g.: power
consumption, energy level, memory, processor), multimedia relevant parameters (e.g.: sound level,
resolution, contrast, color). After the device developers have defined the QoS parameters in
LinkSmart ontology, an application is able to query the QoS Manager for services that fulfill certain
parameters to a certain extent.

Context Awareness in LinkSmart

The subject ‘context awareness’ is very broad, which means that it can be handled or defined in
almost anyway. In order to simplify the use but not the potential for the LinkSmart developer/user
the idea of context awareness and all its side meanings are joined in only a few compone
can be used in a very powerful way. From the software integrators and developer
want to achieve with a Context Awareness Framework is to make an application

D5.2.1 Architecture for intelligence integration

Submission date: 2011-02-28

Application Device Manager to access
retrieves services from devices on the

by gathering information about devices that have been found on gateways or sinks by from
Device Application Catalogue.

ing services provided by the
Application Device Manager to

the nearest gateway. The nearest gateway forwards the request throughout the overlay network. In
oke the QoS Manager for performing a matching over a set of

To assure the quality of information that goes to the application, LinkSmart provides a Quality of
Service (QoS) Manager that allows application developers to select services based on specific QoS

in an ontology, for instance:
network related parameters (e.g.: bandwidth, latency), resource related parameters (e.g.: power
consumption, energy level, memory, processor), multimedia relevant parameters (e.g.: sound level,

fter the device developers have defined the QoS parameters in
LinkSmart ontology, an application is able to query the QoS Manager for services that fulfill certain

ess’ is very broad, which means that it can be handled or defined in
almost anyway. In order to simplify the use but not the potential for the LinkSmart developer/user
the idea of context awareness and all its side meanings are joined in only a few components which

developers the goal they
want to achieve with a Context Awareness Framework is to make an application to be responsive to

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 23 of 42 Submission date: 2011-02-28

any context changes. This fosters an intelligent behavior that the business application end users
desired (e.g.: device behavior changes depend on the user’s access right).

The basic approach to that idea is an object-oriented (albeit with a key-value pair model inside each
object) configuration of contexts inside a rule engine, using inserted rules (as part of the
specification of a context) to perform the reasoning and interpretation, which is extensible and easy
to use for the person who defines these rules. As an example, the following pseudo-rule can be
considered as simple and provides an “intelligent” outcome which can be interpreted by the context-
aware application:

 WHEN
 Movement Detected in Room A
 Room A is Dark
 THEN
 Turn on Light in Room A

As previously mentioned, the rule shown above demonstrates the pseudo-code version of the rule.
The actual rules are defined as objects that are interpreted by the Context Manager and processed
into the rule language suitable for the rule engine used - Drools.

The example rule uses two pieces of data that can be sensed from the environment of Room A, by
appropriate sensors. These are a light sensor and motion sensor(s). The data from these sensors is
acquired using the Data Acquisition Component that reports the sensed data to the Context
Manager, where it is modeled such that it can be reasoned over. The rule itself may specify the
actual value of the sensed light level, or the actual contextualization of the sensed light levels as
either "Light" or "Dark" could be handled in other rules. The firing of this rule, with the when
conditions met, causes the light in Room A to turn on. This could be achieved by either the light
service being called directly by the rule, or by a context-aware application being made aware of the
situation, so that it may act on it, and turn on the light.

As discussed previously, the components which make use of this created rule are the key
components inside the LinkSmart Context Awareness Framework: the Context Manager and the Data
Acquisition Component. The application provides Context Specifications to Context Manager, contain
the definition of the context being specified, as well as associated rules and subscriptions for data (if
the context being specified represents a Device).

The main functionalities of the Context Awareness Framework are data retrieval, context reasoning
and the execution of context-sensitive actions. This is the so called “intelligent” part of the Context
Awareness Framework. It also provides functionalities beyond that such as an interface for accessing
and querying (historic) context data for purposes arising while dealing with data inside applications
or at a later stage. Therefore the Context Awareness Framework makes use of other LinkSmart
components, like the Storage Manager or the Ontology Manager. Since context-awareness mostly
deals with sensors which are rather limited in their capabilities, like e.g. a temperature sensors, it is
sometimes useful to retrieve additional attributes of such a device, e.g. the position relatively to
another object or absolute. The Ontology Manager provides methods to attach this kind of values to
an ontology object which can be retrieved when needed.

Another benefit of the Ontology Manager is the use of assigning computational values to human
understandable values, e.g. the GPS data which describes the position of a user’s home and the
position of the user’s office. This is very helpful for the creation of the rule, in the case the user
wants to define a rule which involves the position of a user or his smart phone. Such pseudo-rules
could then be:

WHEN
 Phone near home
THEN
 Set phone profile to 'home'

WHEN

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 24 of 42 Submission date: 2011-02-28

 Phone near office
THEN
 Set phone profile to 'work'

The Ontology Manager also provides the mechanism to define the term ‘near home’ or ‘near office’,
which can be set by the developer and is sufficient for the whole lifetime of the LinkSmart
application.

Figure 9 shows the overall component arrangement with respect to the Context Awareness
Framework. As described above the Context Manager makes use of other already established
LinkSmart components. It is clear that not all are mentioned in the text, due to the fact that the use
of them is clear and described in other deliverables.

Figure 9: Context Awareness Integration to the LinkSmart Middleware

Figure 10 shows the data process of a simplified context awareness example, with the configuration
part and data processing. There are only a couple of components involved in this procedure, for
example the Storage Manager has been left out to simplify it.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 25 of 42 Submission date: 2011-02-28

Figure 10: Sequence Diagram of the Context Awareness Framework

This is a more detailed description of the whole context processing procedure:

1. The Application send Context Specifications to the Context Manager

2. The Context Manager models contexts, and subscribes for required data from the Data
Acquisition Component

3. The Data Acquisition Component initializes process for 'pulling' data from the data source at
a set frequency

4. The Data Acquisition Component subscribes to the Event Manager for Events published to it
by the data source

5. The Data Acquisition Component reports acquired data to the Context Manager where it is
reasoned upon

6. The Context Manager may update the Ontology with the new values as interpreted by
reasoning over new data. Not shown in figure is also the possibility to store context data
inside using the Storage Manager

7. A application can query for context information

8. Output of rules in Context Manager as context-sensitive action(s) that are carried out with
the involvement of other LinkSmart components, e.g. sensors, devices, applications.

As described above the Context Awareness Framework can be used in any situation where data by
LinkSmart devices and sensors is needed to fulfill a certain task, e.g. the Quality of Service Manager
and the self-management capabilities of the LinkSmart middleware. These two components base
their functionality on changing situations which means on changing data. The quality of service
depends on the attributes and capabilities of devices which might change due to a changing
situation. An example illustrates these dependencies:

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 26 of 42 Submission date: 2011-02-28

The user watches a film on TV and does not want to interrupt the viewing while he moves around in
his house. After he has been in the living room he goes to the fridge in the kitchen, the media
device in the kitchen has only limited resources (screen resolution or computational power), which
means the quality of the TV broadcast has to be limited by the Quality of Service Manager. After he
has been in the kitchen he decides to have a work out session in his gym and the TV program has to
be adjusted to his step.

5.4 Summary and Conclusion

We reviewed the LinkSmart components that could be used for ebbits purposes. The basic
infrastructure components such as network manager, security, and semantic services can be directly
applied for ebbits, as they provide a generic abstraction to heterogeneous network protocols and
elevate the low level communication into a secured service oriented architecture (SOA). SOA is
adopted widely in business solutions and thus provides an interoperable communication within and
inter enterprise. This fulfills the requirements of: “Transparent Communication” and partially
“Security and Privacy”.

Several components are not suitable to ebbits requirements and therefore they must be either
extended, or completely rebuilt. For instance, storage manager only provides remote file system,
which is not suitable for ebbits since ebbits must store a massive amount of distributed data, thus
we will replace the storage manager using database management systems and a persistence
abstraction layer such as Hibernate or ADO.NET Entity Framework.

The LinkSmart semantic infrastructure only describes devices semantically. However, the support for
semantic description of events, which is of significant importance for ebbits, is missing in the
LinkSmart middleware. This will require a modification on the event manager side as well as on the
ontology manager side. The advantage of having events that are described semantically is the
relationship between events and entities which can be inferred automatically by a software agent.

The context manager in ebbits only provides context reasoning based on rules that are coupled with
physical sensors. This approach makes the system rather inflexible, as in real world there always
exist exceptions which make the rule modeling complicated. Secondly, tightly coupling rules with
sensors does not allow the context model to be eused. This is very unfortunate, since context
modeling is a costly activity that must be done by experts.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 27 of 42 Submission date: 2011-02-28

6. Distributed and Centralized Intelligent Service

Architecture

6.1 Functional view

The functional view of software architecture defines the architectural elements that deliver the
system’s functionality. The view documents the system’s functional structure that demonstrates how
the system will perform the functions required of it. According to Rozanski and Woods (2005), the
functional structure model of the Functional View typically contains functional elements, interfaces,
connectors and external entities:

• Functional Elements constitute well-defined parts of the runtime system that have particular
responsibilities and expose well-defined interfaces that allow them to be connected to other
elements. A functional element can be a software component, an application package, a
data store, or even a complete system.

• Interfaces are specifications, defining how the functions of an element can be accessed by
other elements. An interface is defined by the inputs, outputs, and semantics of each
operation offered and the nature of the interaction needed to invoke the operation.

• External Entities can represent other systems, software programs, hardware devices, or any
other entity the system communicates with.

Figure 11: The Functions of Work Package 5 (red) and their relationship to LinkSmart middleware (blue) and

enterprise applications (green).

Applied for the intelligent centralized and distributed services in ebbits, the functional view defines
the three main functional capabilities that are to gather data intelligently from sensors and other
input modalities, transform these data into context and adapt accordingly to the context in order to
achieve business goals. As depicted in Figure 11, the components in work package 5 (depicted with
red) are related to different level of business layers (depicted on the right side in green) and will be
build on top of LinkSmart middleware (depicted in blue), thus the main components in the work
package 5 must be designed as loosely coupled as possible not only to serve their vertical
relationships but as well as their horizontal relationships to the existing business applications.

The components within WP5 will be developed based on LinkSmart Middleware (formerly called
Hydra). LinkSmart provides security, device discovery, semantic infrastructures, and data acquisition
component. Security in ebbits provides an encryption on the messages being exchanged. Moreover
LinkSmart Security also allows services to be restricted based on certain policies. Network
management of LinkSmart provides a p2p connection that works behind firewall seamlessly.
Semantic Infrastructure allows application domain be modeled semantically so that relationships can

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 28 of 42 Submission date: 2011-02-28

be inferred easily. Device discovery enable ebbits to discover devices based on their semantic
description. This offers a great flexibility, since the users are not coupled with any specific devices,
but rather to the semantic description of the devices (e.g.: capabilities, locations, quality, etc).
Retrieving information from sensors is done by data acquisition component that provides push and
pull methods these allows freedom for the application to choose how to sample data.

The enhancements that WP5 will introduce are firstly, the components that will be developed in the
Task 5.2. Multi-Sensor Data Fusion. These components that are responsible to decide on data
acquisition strategy manage and process raw sensor data into higher quality of information. These
data can be processed on-line for any operational purposes (e.g.: to make decisions autonomously
based on the context) as well as for off-line analytics purposes (e.g.: Business intelligence
reporting). Data warehousing techniques are used to dump the operational data into another data
repository in which data is transformed and analyzed without affecting the integrity of the original
data. This relates closely to sensor data management in task 5.2 as data correlations and analytics
are the fundamental features needed to support decision making process. Multi sensor data fusion
provides means to fuse raw data into meaningful information for the users. Fusing data into
information involves various techniques including filter, aggregation, correlation, pattern recognition,
and estimation. These approaches are similar to data mining techniques. Reporting components in
business application could take advantage by retrieving information from context management layer
to report the context of each case in order to provide better causality information. (e.g.: why the
energy consumption has increased?). A relation of business application and control management is
that business rules defined in the business applications can be reused by control management to act
to the current context.

6.1.1 Multi Sensor and Data Fusion Management

As discussed in D5.1.1. The first generic model was introduced by a data fusion working group of
Joint Directors of Laboratories (JDL), a joint effort within the U.S. department of defense has been
used as guidelines for developing multi sensor and data fusion solutions in many domains including
manufacturing and goods production. However it was initially designed with vocabulary for defense
systems. Moreover, it does not describe any architectural design that suffices as a reference for
development process in ebbits (e.g.: it does not describe any discovery and data acquisition
processes). Thus in this deliverable we will describe the viewpoints that are necessary to be a
guideline for the project partners in developing the multi sensor and data fusion components. Figure
9 depicts a slight modification to JDL model. We changed the wording of each component’s name
from the original JDL model for clarity purposes as these terms are more generic compare to the
original terms that were taken from defense domain.

Figure 12: JDL Model for Sensor fusion(Liggins, Hall et al. 2009)

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 29 of 42 Submission date: 2011-02-28

JDL model introduced a fusion process that includes 5 processing levels, a database, and a human
computer interaction. The sources receive input from various sensors, a priori knowledge, and
human. The database is responsible to maintain the data needed by processes. HCI allows human
operators to provide query, input knowledge etc. We eliminate HCI components, as the sensor
fusion processes in ebbits will primarily be used in conjunction with context and control
management. Nonetheless, as the original JDL model, this model can also be used to support
decision making process by human operators (e.g.: Business intelligence applications).

The processes in this model consist of 5 levels:

• Subobject data refinement aims at obtaining initial information about the each
characteristic under observation without dealing with correlation to the object being
observed. In this process, initial processing focuses on the signal acquired from individual
sensor that includes cleaning signal from noises, smoothing, and extracting features. This
stage can also consist of signal conversions and mapping. E.g.: analogue digital converter,
quantization, image feature extractions. In this process, inference processes do not require
assumptions about the presence or characteristics of entities possessing such observable
features. This process is often performed by individual sensors, or with the product of
individual sensors. However, when communication overhead and processing power is
enough, this process can also include feature extraction and measurement using multi-
sensor. Image fusion normally involves extracting features across multiple images, often
from multiple sources.

• Object refinement was originally conceived as encompassing the most prominent and
most highly-developed applications of data fusion: detection, identification, location, and
tracking of individual physical objects (aircraft, ships, land vehicles, etc). Most techniques
involve combining observations of a target of interest to estimate the states of interest. It
focuses on combining sensor data from different sensors to estimate objects being observed
based on its characteristics such as position, velocity. This stage aims at correlating entities
and their individual characteristics e.g.: each step in manufacturing process consumes
electricity and water.

• Situation refinement tries to describe relationship among the current entities and their
environment which also includes clustering and relation analysis. This step inspects situation
from holistic point of view to infer situations, states, occurring events, and interaction
among entities and their environment. Methods for representing relationships and for
inferring entity states on the basis of relationships include graphical methods (e.g., Bayesian
and other belief networks). Situation assessment involves the following functions:

o Inferring relationships and dependencies among entities

o Recognizing/classifying situations based on the involved entities, attributes, and
relationships.

o Infer the effect of the objects interaction e.g.: new states and attributes of objects
are introduced.

• Impact refinement definition was refined by JDL as “the estimation and prediction of
effects on situations of planned or estimated/predicted actions by the participants (e.g.,
assessing susceptibilities and vulnerabilities to estimated/predicted threat actions, given
one’s own planned actions)”. This process tries to assess impacts of the situations as well as
project the current situation to the future to draw inference about possible future impacts.
Impact assessments includes analyze of opportunities, risks, vulnerabilities, and strengths. It
involves combining multiple sources of information to estimate counterfactual outcome. It
conducts a cost analysis given the current information.

• Process refinement deals with monitoring of the data fusion performance in order to
improve the processes. This part works together with control and resource management in
order to change the sensing processes (e.g.: by dispatching more or less sensors). This
process combines information to estimate a system’s measures of performance based on a
desired set of system states and responses. This process may include sensor calibration and

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 30 of 42 Submission date: 2011-02-28

alignment errors, track purity and fragmentation, etc based on the measures of errors and
performance.

• Database in fusion domain is separated into database for support system and for fusion
processes.

6.1.2 Context Management

The current LinkSmart context engine is not suitable for ebbits purposes since it is tightly coupled
with drools12 rule engine. The rule engine does not provide flexibility to learn and evolve over time
autonomously and thus the rules must be maintained all the time. Ebbits requires a flexible system
that needs a minimum intervention from human operators to reduce the maintenance costs as well
as to keep the up time of the production machines as high as possible in order to meet the targeted
throughput. Therefore in ebbits we will design a new context engine that is more flexible, and has
high cohesion and low coupling to special technology, allowing the tailored components to be
assembled on top of the framework to satisfy the ebbits requirements. The flexibility of a framework
and its functionality and usability is always a trade off. The more flexible the framework is, the more
difficult it would be to set up until a usable running system is achieved. Therefore this framework
focuses primarily on the manufacturing and food production domain.

Context management has been developed variously over the last decade that includes simple
approach such as attribute-value pairs to a more complex approach such as ontology modelling.
Context management systems, according to a recent survey (Bettini, Brdiczka et al. 2010), are
developed to gather, manage, evaluate and disseminate context information. Several challenges that
context management system often face include (i) heterogeneous information sources (for instance,
multi modal sensory, database, and user profiles), (ii) relationships and dependencies which are
quite important to infer the appropriate responds to given the context information, and (iii)
timeliness of the situations as context information might need to access past states and future states
therefore, the historical information must be captured and take into account when inferring the
present context.

Several works have discussed the disadvantage to model contextual using information from physical
sensor directly, since this low level information is vulnerable to changes and uncertainty(Ye, Coyle et
al. 2009). A higher level of context abstraction that uses situations, have been explored and
proposed (Gellersen, Schmidt et al. 2002; Dobson and Ye 2006).

Figure 13: Different level of context abstraction (Bettini, Brdiczka et al. 2010)

Modeling context information in the higher abstraction decouples the context from the specific data
acquisition processes and the sensor data itself. High level context information can be derived from
the past, present and future situations of the environment and the entities in it. Situational
information as explained in 6.1.1, are delivered by the sensor fusion component. This approach
enhances the capability of context management in LinkSmart to be more flexible and extensible
since high level context model can be reused and exchanged between systems.

12 http://www.jboss.org/drools

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 31 of 42 Submission date: 2011-02-28

Figure 14: Context Aware Layers (Henricksen, Indulska et al. 2005)

Henricksen introduced five layers abstractions. Layer 0 resembles the hierarchical sensor network
and fusion layer. Layer 1 translates the sensed data into beliefs of the actual situations (note that
sensor readings always contain noise and are not 100% accurate.). Layer 2 manages the context
model in a repository and serves context aware applications by providing means to query to the
context models. Decision support tools support context consumer to decide on the corresponding
actions and adaptations according to the context information. Programming toolkits provides support
to the interactions of the application components with other components of the context-aware
system.

Context management in ebbits is responsible to administer the context models of entities allowing
applications to adapt to the situation changes. This offers a great flexibility and maintenance as
required by the users, specifically the requirements of personalized information views, and self-*
capability of the system.

Context aware framework in ebbits provides interface for the expert developers to define context
models that represent context of the entities, saving them into repository, and providing a way to
improve the models, and more importantly, it provides a channel to reuse and exchange the models
among the applications in the network which also allows entities to move from an application to
another.

We identify the functionality of context management system usually consists of several components
(depicted in Figure 15):

Context Reasoner is responsible to correlate events and states of the current, past, and possible
future situations with the corresponding entities and derive the context of the entities based on the
information it obtains from the environment through sensors and previous knowledge.

Context modeler is responsible to interface with developers who define the context models of
entities and situations. This can be implemented as a language such as xml, ontology, attribute-
value model, as well as graphical user interface.

Feedback system is responsible to facilitate the improvement of the model by incorporating the
feedback by expert users . The main goal of this component is firstly to improve the context models
base on the feedback of the experts.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 32 of 42 Submission date: 2011-02-28

Knowledge Base is responsible to save context models into a repository. This layer is also useful
for abstracting specific data persistence technology and give possibilities for developer to save the
models in any persistence form e.g.: database, semantic web, semantic store.

Context Dissemination is responsible to disseminate the context information to the applications
that are interested in the context of a situation in order to adapt its behavior.

Sensing Management is responsible to manage sensors and data acquisition processes, as well as
conducting sensor fusion in order to detect events, entities, and current situations.

Control Management is responsible to manage actuation process in order to adapt the condition
of the environment.

Figure 15: Context Awareness Framework in General

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 33 of 42 Submission date: 2011-02-28

6.1.3 Control Management

Industrial control architecture

Figure 16: industrial layered architecture(Kirrmann 2011)

A general industrial control and process automation architecture abstraction can be seen in Figure
16 that is composed of four layers. The lowest layer deals with real time control mechanism such as
moving robotic arms. This layer is dominated by embedded real time controllers that are known as
programmable logic controllers (PLCs). PLCs communicate with each other through industrial bus
systems such as Fieldbus13, ControlNet14, Profibus15, and Modbus16. The PLCs are coordinated by
Distributed Control System (DCS) or supervisory control and data acquisition (SCADA) which utilize
PCs in the group control level. This level, is responsible mainly to coordinate without controlling the
processes in real time. In the production level, manufacturing execution system (MES) and PCs are
used to do planning and decisions of the production plans. The communication in this level is
dominated by TCP/IP network. The decisions and production plans are then disseminated into the
lower layers automatically through the network as well as manually through the operators.
Management level deals mainly with office automation technologies such as enterprise resource
planning system and analytic tools such as business intelligence. The integration between ERP and
MES up to now is still a big problem, since there are technological and standardization gaps between
two legacy systems. For the green field integration, ISA SP-95 defines standard interfaces for new
MES and ERP systems(Scholten 2007).

Recent survey (Samad, McLaughlin et al. 2007) has revealed that the process controls that in the
past have not been using discreet and event based control architecture, nowadays have become
generally used as consequence of the emergence of the hybrid control that in this context
encompasses regulatory, discrete, batch, logic, and sequence control. Many solutions have also shift
from closed and proprietary into more open system as PC based supervision systems emerge.

13 http://www.fieldbus.org/
14 http://www.odva.org/Home/ODVATECHNOLOGIES/ControlNet/tabid/244/lng/en-US/language/en-US/Default.aspx
15 http://www.profibus.com/
16 http://www.modbus.org/

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 34 of 42 Submission date: 2011-02-28

Fieldbus has brought a more complex distributed architecture. Sensor and actuators become more
powerful and able to do processing locally for instance transmitters have compression and scaling
algorithms built in, and actuators can include processors on which control calculations can be
executed. Consequently, distributed processing introduces the potential for negative impact on
overall system latency and jitter.

Model-predictive control that was only common on the supervisory level or group control has begun
to emerge into individual control level. The implication of this trend will require user interfaces
designed for end users working on this level such as technicians, unit operators, and supervisors.

Web and internet has also influenced the developments of the industrial control system. For instance
internet offers costumer to subscribe to an online reporting tools (e.g.: Honeywell’s Loop Scout
service17) that collect process automation data, analyse it on the server, and report the result to the
customer.

Samad et al. forecasted the term collaborative process automation systems (CPASs) for the next
stage in the evolution of the distributed control system which requires a tight integration of
information synchronization and real-time, contextual information exchanged directly between
applications.

6.2 Deployment View

6.2.1 Service Oriented Architecture

The Service Oriented Architecture (SoA) represents an architectural style where the primary concept
is the use of loosely coupled, implementation-neutral services supporting a business process as
building blocks. Service consumers use the service by means of its published interface-based service
description without dependence on implementation, location or technology. The process building of
combining and sequencing services to provide more complex services is known as orchestration.

A SoA solution is built of a set of services orchestrated by clients or middleware to realize an end-to-
end (business) process. The openness of the architectural style also allows for ad-hoc service
consumers and flexible and dynamically re-configurable processes. The World Wide Web Consortium
(W3C) defines SoA as “A set of components which can be invoked, and whose interface descriptions
can be published and discovered”. No universally agreed definition is available, but the term is
generally considered to imply that application functionality is provided and consumed as sets of
services which can be published, discovered and accessed and are loosely coupled as well as
implementation and technology neutral.

SoA encourages loose coupling among the interacting software systems. A service is used only via
the published service description and the service consumer does not address a specific
implementation or deployed instance of the service. Changes to the implementation do not affect
the service consumer and the service consumer can change the instance of the service that is used
(changing location or implementation of the service, e.g. when two service providers offer the same
service) without modifying the client application.

By abstracting the service from the implementation, the developer will not need to consider which
technique was used to implement the service. Parallel implementations of the service may be
available, and the actual version used is transparent to the consumer.

The use of standardized protocols for publishing, discovering and accessing services allows the
service to be provided on any platform that can implement these protocols. In orchestrating a SoA
solution, services that are (internally) implemented with different languages, architectural styles and
on platforms from different vendors, can be used together transparently.

Any technology that can be used to implement loosely coupled, implementation independent
services could be used to realize SOA. However, most discussions and actual implementations of SoA
use Web Service technologies as the way of publishing, discovering and accessing a service. Web
Service technologies include SOAP and XML for exchanging messages containing structured and
typed information to access services, to publish and describe a service and UDDI for dynamically

17 www.loop-scout.com

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 35 of 42 Submission date: 2011-02-28

finding and invoking web services. On top of these now well-established protocols, a host of new
protocols have been developed to support orchestration of services and describe the semantics of
services e.g. OWL-S builds on OWL to define a core set of mark-up language constructs for
describing the properties and capabilities of Web services, WS-Coordination provides a method of
defining and supporting workflows and business processes. WS-Coordination is an extensible
framework for providing protocols that coordinate the actions of individual web services in
distributed applications to provide a business process defined in BPEL. WSRF (Web Services
Resource Framework) defines an open framework for modelling and accessing stateful resources
using Web services.

Figure 17: Service Oriented Architecture ebbits

Typical distributed industrial system architecture contains sensors, controller (PLCs), and mechanic
components as actuators. Local architecture suggests that the controlled equipments are deployed
within close proximity and the scope of each controller is limited to a small sub-system. PLCs are
typically capable of accepting inputs from a supervisory controller (e.g.: DCS / SCADA) to initiate or
terminate locally-controlled automatic sequences, or to adjust control set points, but the control
action itself is determined in the local PLCs. The required operator interfaces and displays are also
local. This provides a significant advantage for an operator troubleshooting a problem with the
system, but requires the operator to move around the facility to monitor systems or respond to
system contingencies. In a distributed control system, controllers are provided locally to systems or
groups of equipment, but networked to one or more operator stations in a central location through a
digital communication circuit. Control action for each system or subsystem takes place in the local
controller, but the central operator station has a complete visibility of the status of all systems and
the input and output data in each controller, as well as the ability to intervene in the control logic of
the local controllers if necessary. The communications among PLCs involve a real-time and wired
communication through industrial Bus as explained in 4.1.5.

In ebbits, we propose that communication to devices is facilitated by software proxies that operate
in SOA environment. The software proxies offer web service interface that are accessible through
the TCP/IP network as well as from internet. The proxy is responsible to provide communication
from devices to MES, and ERP system. This means that the proxies must handle the communication
between real-time operation of embedded systems and non-real time operation that happens on the
SOA environment. In order to keep the embedded components always synchronized regardless of
the jitter and delays of communication from non real-time systems, all control actions through the
proxies must be offered as high level services that represent synchronized actions of embedded

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 36 of 42 Submission date: 2011-02-28

components. For instance, a function that a service offer is called setProductionSpeed(int x) where
the setProductionSpeed will execute smaller commands to control individual embedded devices.
Since the direct actuation of the mechanical components must be done in the real-time environment,
these small commands must be buffered in the real time system until all corresponding commands
are accepted, before any execution process is allowed.

There have been many standards to integrate industrial controller with PCs such as OLE for Process
Control (OPC), which stands for Object Linking and Embedding (OLE) for Process Control, is the
original name for a standards specification developed in 1996. The recent specification of OPC
enables web service as the interface which is named OPC Unified Architecture (OPC UA). We
propose to use this standard for connecting the device proxies into the LinkSmart network. However,
OPC standard is only widely used for PLCs based controllers which is not always the case for the
farms equipments. Thus, for the farms equipment, the proxies must be built to handle
heterogeneous proprietary protocols.

6.3 Summary and Conclusion

According to the initial requirements, intelligent centralized and distributed services in ebbits should
define the three main functional capabilities including: (i) to gather data intelligently from sensors
and other input modalities, (ii) to transform these data into context and (iii) adapt accordingly to the
context in order to achieve business goals. We propose to follow the JDL model for processing data
acquired from multiple sensors. The JDL model recommends a fusion process that includes 5
processing levels that process raw signals from multiple sources resulting in a situation assessment.
The accumulated situation over time can be used to infer the context based on the context models
defined by experts. We learned from the LinkSmart Context Framework that modeling context
information in the higher abstraction decouples the context from the specific data acquisition
processes and the sensor data itself. High level context information can be derived from the past,
present and future situations of the environment and the entities in it. Situational information
(explained in Section 6.1.1) is delivered by the sensor fusion component. This approach enhances
the capability of context management in LinkSmart to be more flexible and extensible since the high
level context model can be reused and exchanged between systems.

Industrial control and process automation architecture abstraction is normally composed of four
layers. The lowest layer deals with embedded real time controllers that are known as programmable
logic controllers (PLCs). In the second layer, the PLCs are coordinated by a Distributed Control
System (DCS) or a supervisory control and data acquisition (SCADA) which utilize PCs. In the
production layer, manufacturing execution system (MES) and PCs are used to do planning and
decisions of production plans. And the highest layer is the office automation where normally
enterprise resource planning system and service oriented architecture are used. Service oriented
architecture provides a standardized communication for enterprise applications. These layers are not
fully electronically integrated. Some of the data is still manually transferred using paper documents.
When integrating these layers electronically, the low level communication that involves a real time
embedded environment must be handled with consideration of communication jitter and delays that
SOA caused. Therefore we propose a proxy based solution and a gateway in the real-time
environment that is able to keep the synchronization of mechanical components. Integrating the
manufacturing equipment to the LinkSmart proxies can be done through OPC technology, however
for farm equipments we still have to deal with various proprietary protocols.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 37 of 42 Submission date: 2011-02-28

7. Bibliography

Krakowiak, S. ObjectWeb. 2003 8 April 2010]; Available from:

http://middleware.objectweb.org/.

Day, J.D. and H. Zimmermann, The OSI reference model. Proceedings of the IEEE, 1983.

71(12): p. 1334-1340.

Tanenbaum, A.S.V.S., M, Distributed Systems. Principles and Paradigms. 2nd ed. 2008:

Prentice Hall International.

WS-I, Basic Profile Version 1.1. 2006; Available from: http://www.ws-

i.org/Profiles/BasicProfile-1.1.html

Lardies, F.M., et al., Deploying Pervasive Web Services over a P2P Overlay, in Proceedings of

the 2009 18th IEEE International Workshops on Enabling Technologies: Infrastructures

for Collaborative Enterprises. 2009, IEEE Computer Society. p. 240-245.

Hoffmann, M., et al. Towards Semantic Resolution of Security in Ambient Environments. in

International Conference on Ambient Intelligence Developments. 2007. Sophia-

Antipolis, France: Springer Paris.

Hansen, K.M., et al., Flexible Generation of Pervasive Web Services Using OSGi Declarative

Services and OWL Ontologies, in Proceedings of the 2008 15th Asia-Pacific Software

Engineering Conference. 2008, IEEE Computer Society. p. 135-142.

Bettini, C., O. Brdiczka, et al. (2010). "A survey of context modelling and reasoning

techniques." Pervasive and Mobile Computing 6(2): 161-180.

Dobson, S. and J. Ye (2006). Using fibrations for situation identification, Citeseer.

ebbits-consortium (2010a). D5.1 Concept and Technologies in Intelligent Service Structures,

Ebbits Consortium.

ebbits-consortium (2010b). D2.4 Initial Requirements Report, Ebbits Consortium.

ebbits-consortium (2010c). D2.1 Scenarios for Usage of the ebbits Platform, Ebbits

Consortium.

Eisenhauer, M., P. Rosengren, et al. (2009). A Development Platform for Integrating Wireless

Devices and Sensors into Ambient Intelligence Systems. Sensor, Mesh and Ad Hoc

Communications and Networks Workshops, 2009. SECON Workshops '09. 6th Annual

IEEE Communications Society Conference on.

Gellersen, H., A. Schmidt, et al. (2002). "Multi-sensor context-awareness in mobile devices

and smart artifacts." Mobile Networks and Applications 7(5): 341-351.

Henricksen, K., J. Indulska, et al. (2005). "Middleware for distributed context-aware systems."

On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: 846-

863.

Kirrmann, P. D. H. (2011). Control System Architecture ABB Research Center, Baden,

Switzerland.

Liggins, M. E., D. L. Hall, et al. (2009). Handbook of Multisensor Data fusion, Theory and

Practice. Boca Raton, FL, CRC Press.

Rozanski, N. and E. Woods (2005). Software systems architecture: working with stakeholders

using viewpoints and perspectives, Addison-Wesley Professional.

Samad, T., P. McLaughlin, et al. (2007). "System architecture for process automation: Review

and trends." Journal of Process Control 17(3): 191-201.

Scholten, B. (2007). The Road to Integration: A Guide to Applying the ISA-95 Standard in

Manufacturing, Isa.

Ye, J., L. Coyle, et al. (2009). Using situation lattices in sensor analysis, IEEE.

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 38 of 42 Submission date: 2011-02-28

8. Table of Figures

Figure 1: Architecture Definition Activities .. 7
Figure 2: Architecture Definition Activities Details .. 8
Figure 3: Viewpoint Catalogue ... 9
Figure 4: Architectural Perspectives and Views .. 10
Figure 5: LinkSmart middleware architecture .. 16
Figure 6: LinkSmart's secured message transmission ... 18
Figure 7: Device Classification Decision Flow Chart .. 20
Figure 8: API for Application Development. ... 22
Figure 9: Context Awareness Integration to the LinkSmart Middleware 24
Figure 10: Sequence Diagram of the Context Awareness Framework 25
Figure 11: The Functions of Work Package 5 (red) and their relationship to LinkSmart

middleware (blue) and enterprise applications (green). 27
Figure 12: JDL Model for Sensor fusion .. 28
Figure 13: Different level of context abstraction (Bettini, Brdiczka et al. 2010) 30
Figure 14: Context Aware Layers (Henricksen, Indulska et al. 2005) 31
Figure 15: Context Awareness Framework in General ... 32
Figure 16: industrial layered architecture ... 33
Figure 17: Service Oriented Architecture ebbits ... 35

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 39 of 42 Submission date: 2011-02-28

Appendix A. Complete Requirements of WP-5

ID Summary
Prior

ity
Rationale Fit Criteria Source

27

Product-related

information should be

represented in a

machine-readable

format 3

Automatic processing requires

that machines can understand

and process information

Machines can process

information of a

product

automatically.

TNM scenario

workshop in

Copenhagen

35

Hazardous

Environmental

Monitoring of

Manufacturing Plant 1

Currently the environment of a

plant provide is not monitored

properly. However, this is quite

important to guarantee the

safety of an operator.

The safety of the

operator is improved

by 20% on the basis

of environmental

input information.

During ebbits

manufacturing

workshop (19th

Oct, 20010)

COMAU

employee

(Roberto) raised

this issue.

36

Controlling of

machines/stations in

manufacturing plant

remotely 3 To optimize production process.

Relevant stations that

operate automatically

can be

started/stopped via

remote calls.

During ebbits

manufacturing

workshop (19th

Oct, 20010)

COMAU

employee

(Fulvio) raised

this issue.

39

Retrieve

manufacturing data

history of any relevant

event during

production 1

If production defects are

recognized, it is helpful to look

at the production process

history in order to find out what

caused the defects.

Any manufacturing

relevant (pressure,

energy consumption,

temperature,

humidity, time etc)

data is retrievable.

During ebbits

manufacturing

workshop (19th

Oct, 20010)

COMAU

employee raised

this issue.

43

Aggregating collected

sensor data at a

central point 1

The aggregation of collected

data is important for analyzing

the data.

A framework is

provided that

aggregates collected

sensor data at a

central point of an

application.

TNM said that

they currently

can obtain

different sensor

data, though the

aggregation is

missing.

44

Farmers are able to

retrieve optimized

models from research 4

Farmers are willing to share data

if they could get something in

return such as models to

optimize feeding process.

Farmers can get

optimized models

electronically. TNM workshop

45

System can feed the

farms data to research 4

Most of the farming models are

developed by research

organizations, universities etc.

Researchers are able

to get their hands on

life data on farms.

TNM workshop

(Thomas)

47

Resilience and

adaptable to

environment

condition changes 2

environmental changes such as

lighting, temperature affect the

results of manufacturing

process. so far machines are

tuned manually by technicians.

adapting to environmental

condition can lead to reducing

energy consumption e.g.:reduce

machines can adapt

its parameters

adapting to

environmental

changes.

During ebbits

manufacturing

scenario

workshop in Oct

2010 this is

issue had been

raised by a

COMAU

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 40 of 42 Submission date: 2011-02-28

heater temperature when it's

warm outside.

employee.

49

Access to energy-

related information

from production

machines needs to be

provided. 2

Energy-related information is

measured by some of the

operational machines (e.g. in

the production plant), but it is

not distributed into a network.

If any machine

provides access to

energy-related

information, ebbits

distributes this

information to all

interested parties.

COMAU

scenario

workshop

(10/19/2010).

750

Filtering to Obtain

relevant Information 3

Too much information

overwhelm farmers while

making decisions.

Farmers are able to

view the relevant

information out of

the whole.

TNM said that

they need to

provide only

relevant

information to

farmers.

Farmers have

different views

on relevant

information

64

Loggiing of Quality

related informaation

of each

Manufacturing Part 1

Quality is very important inside

an assembly line as it is the

essential parameter used for

force tests or lack

tests.Furthermore, if failures are

detected lately when a car is

already in the market, but shows

some lack, the production

history can be traced to find the

devil in the detail.

Quality related

information is logged

inside a proper carrier

medium.

During ebbits

manufacturing

workshop (19th

Oct, 20010)

COMAU

employee

(Fulvio) raised

this issue.

66

correlate problems

found with production

batches 2

when the source of problem

have been isolated, producers

must know which

products/batches are affected.

production batches

affected by problems

can be identified. TNM Workshop

67

automatic analysis of

cross enterprises

product life cycle data 3

searching production problem

from end costumer complaints

need to track back data from

several enterprises and logistic.

analyzing data cross

enterprises can be

done online and

automatically.

TNM Workshop

Copenhagen

72

officials have a back

door access to highly

important information 4

officials want to avoid

enterprises commit information

/ documents forgery

offcials have an

access to certain

information

TNM Workshop

in copenhagen

75

system should aware

of what which

livestocks are in the

building 3

pigs in different phases have

different requirements of

climate, insulation, feed,

vitamins, etc

system can adjust

itself according to

what's inside the

building.

TNM Workshop

in copenhagen

78

system should provide

location tracking of

the stocks/livestocks 1

users sometimes lost track

where the goods /animals are.

users can identified

where the stocks /

livestocks are

TNM Workshop

Copenhagen,

Comau

Workshop

Turino

79

location tracking

should be

implemented as

independent app 2 decoupling from existing system

tracking system is

implemented

independently

TNM Workshop

Copenhagen

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 41 of 42 Submission date: 2011-02-28

81

System should show

Energy Cost for

different granularity

of production

processes 1

energy cost at different levels is

needed to do benchmarking of

operational processes.

each automated

process, machine is

able to show energy

cost

TNM Workshop

in Copenhagen,

Comau

Workshop in

Turino

82

Protection to sensitive

information 1

some sensitive information

endanger company existence.

system provides

access restrictions to

sensitive information

TNM Workshop,

COMAU

Workshop

91

filter/fusion

information for each

operational process 3

each process needs different

resolution of information

processes only get

information needed

Comau

Workshop in

Turino

92

early maintenance

notification when

needed 4

early maintenance prevent

permanent damage to the

robots, ensure the reliability of

robots

users/technicians are

notified if robots

need maintenance

COMAU

Workshop

Turino

93

bring data from

fieldbus network to

ethernet network 3

analytics is done by ERP

program on a computer that

work on TCP/IP.

analytics software

can analyse data from

manufacturing robots

Comau

Workshop

Turino

103 automatic calibration 1

calibration is still done manually

it is error prone, and takes time.

75% of existing

manual calibration is

done automatically.

Comao

Workshop in

Turino

109

recognition of energy

wasting behaviors 4

help decision makers to

optimize energy usage

decision makers are

alerted when energy

wasting takes place

Comau

Workshop

130

Item identification

system should provide

open interfaces to

other systems 3

Identification of pigs is done

with RFID tags at their ears and

with antennas in corridors that

recognize pigs passing by. The

system should not be connected

to a specific system, but rather

provide open interfaces that can

be exploited by any system.

Any system can easily

access the item

identification system.

TNM user

workshop in

Copenhagen

131

Support fuzzy or

probability concepts

for reasoning 4

there is no reasoning algorithm

that is able to solve any kind of

cases

Fuzzy concepts

should be supported

through e.g.

probabilistic models.

Hydra open

requirements

134

Ability to self-

adaptation 2

A knowledge model enables the

middleware to contain a

representation of itself and

manipulate its state during its

execution. This feature should

serve as the basis for self-

adaptation of the middleware

(e.g. reconfiguration of resource

usage, triggering the

component-based services).

Middleware is able to

adapt its

configuratiton in 60%

of identified cases

requiring

reconfiguration.

Hydra open

requirements

135

Protection of System

Integrity 2

In order to prevent an

inexperienced user to cause

malfunctions by changing

system configurations, the

middleware should monitor,

analyse and, if necessary,

Middleware provides

mechanisms to

monitor system

integrity and to react

in the case of failures.

Hydra open

requirements

ebbits D5.2.1 Architecture for intelligence integration

Document version: 0.0 Page 42 of 42 Submission date: 2011-02-28

prevent or give notifications

about faulty changes.

138

Distributed

Intelligence should

not lead to resource-

heavy systems 1

We have a need for

"intelligence" (Semantics,

reflection etc.). We have a need

for supporting embedded

systems. This should not conflict

Minimum hardware

requirements (which

must be supported by

all target hardware)

are defined and all

hardware that meets

the specifications is

guaranteed to work

with hydra.

Hydra open

requirements

139

Support runtime

reconfiguration 3

To supporting monitoring

leading to adaptation, the

architecture should be dynamic

in the sense that

components/services should be

connectable at runtime.

Services and devices

can be connected

during runtime.

Hydra open

requirements

140

Transparentness of

device performance 3

The middleware should contain

services that allow monitoring

on what devices are doing. This

includes monitoring response

time, device load (e.g., CPU),

and message interchanges per

second.

Devices provide

monitoring services.

Hydra open

requirements

141

Report errors in

devices 2

Devices should be able to report

errors.

Devices provide

services for reporting

errors.

Hydra open

requirements

154

Aggregate data from

various data bases

and sources 3

Information will be stored in

several places, but needs to be

combined in some place and

assigned to the actual product

or entity.

A data aggregation

component is

available.

TNM user

workshop in

Copenhagen

155

Synchronisation of

Acquired Data is

necessary 3

Data synchronization might be

necessary, because data will be

acquired automatically,

manually, semi-manually with

different timestamps.

A data synchonization

component

performes a

timestamp-based

synchronisation of a

data set.

TNM user

workshop in

Copenhagen

157

Different Views on the

Data is necessary 3

We need services that provide

different views on the data

cloud by combining data from

different sources.

Data can be filtered

and sorted based on

an arbitrary set of

parameters.

TNM user

workshop in

Copenhagen

159

End-users need to be

able to managment

their distributed data 3

Farmers want to manage their

distributed data, because today

they have no full control of data.

End-users can easily

manage data from

distributed sources.

TNM user

workshop in

Copenhagen

