
Document version: 1.0 Submission date: 2013-08-31

Enabling the business-based

Internet of Things and Services

(FP7 257852)

D6.5 Analysis of distributed and centralised BI and integration

Published by the ebbits Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2009.1.3: Internet of Things and Enterprise environments

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 2 of 32 Submission date: 2013-08-31

Document control page

Document file: D6.5 Analysis of distributed and centralised BI and integration.docx

Document version: 1.0

Document owner: Alexander Schneider (Fraunhofer FIT)

Work package: WP6 – Mainstream Business Systems

Task: T6.3 – Investigation and enhancement of integration mechanisms for

distributed intelligence and business intelligence

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Alexander Schneider 2013-07-11 Initial version

0.2 Daniela Fisseler (FIT), Ferry

Pramudianto (FIT)

2013-08-13 Business process monitoring, Domain

model and

0.3 Matts Ahlsén (CNET), Peeter

Kool (CNET),

2013-08-21 Event processing mechanics

0.4 Marek Paralic (IS) 2013-08-22 Device modelling and identification

0.5 Peter Kostelnik (TUK) 2013-08-23 Event ontology and annotations

0.6 Yves Martin (SAP) 2013-08-24 Business intelligence and integration

0.9 Alexander Schneider (FIT) 2013-08-26 Version for internal review finished

 Final version submitted to the European

Commission

Internal review history:

Reviewed by Date Summary of comments

Pietro Cultrona (COMAU) 2013-08-29 Accepted with minor comments

Paolo Brizzi (ISMB) 2013-08-28 Accepted with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the ebbits Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The Members of the ebbits Consortium shall not be held liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 3 of 32 Submission date: 2013-08-31

Index:

List of Abbreviations: ... 4

1. Executive summary ... 5

2. Introduction .. 6

3. Distributed and centralised intelligence .. 7

3.1 Sensors and Devices .. 7
3.2 Event processing mechanisms ... 8

3.2.1 From simple to complex event processing ... 8
3.2.2 Centralised and distributed processing .. 9
3.2.3 Event ontology and semantic annotation of stored data 10
3.2.4 Examples of semantic support for historical data analysis................... 13

3.3 Domain model .. 14
3.4 Business-process-based data gathering ... 17

3.4.1 Basics .. 17
3.4.2 Related work .. 18
3.4.3 Monitoring.. 21
3.4.4 Data Enrichment ... 22
3.4.5 Tool support ... 22

4. Business intelligence and integration .. 24

4.1 Integrating Business Intelligence Data for Enterprise Information and Resource

Planning Systems ... 24
4.2 Self-Service Business Intelligence with SAP Lumira 27

5. Conclusion ... 30

6. References .. 31

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 4 of 32 Submission date: 2013-08-31

List of Abbreviations:

BAM Business Activity Monitoring

BPM Business Process Modelling

BPMN Business Process Modelling Notation

CEP Complex Event Processing

EPA Event Processing Agent

EPC Event-driven Process Chain

EPN Event Processing Network

ERP Enterprise Resource Planning

IERC IoT European Research Cluster

IoT Internet of Things

MES Manufacturing Execution Systems

PSO Product Service Orchestration

PWAL Physical World Adaptation Layer

UML Unified Modelling Language

WSBPEL Web Services Business Process Execution Language

XMI XML Metadata Interchange

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 5 of 32 Submission date: 2013-08-31

1. Executive summary

Internet of Things (IoT) applications are characterized by their ability to integrate large number of

data sources and support the end user by providing a better user experience. This is accomplished

by the vast amount of information that the distributed data sources provide and interpret them in a
meaningful way.

For IoT systems the challenge is to properly identify which data sources are available and how to
get the data and interpret them in a meaningful way. For this the ebbits platform provides models

where the addressed devices and their data (events) are semantically described. The ebbits Entity

Manager makes the devices identifiable by providing a unique id within the ebbits system. This
allows for correct interpretation of the data coming from the devices. The PWAL (Physical World

Adaptation Layer) allows for the integration of devices regardless of manufacturer and supported
interfaces. Besides simple event processing of the raw device events Complex Event Processing

(CEP) is supported where the gathered data can be processed (e.g. rule processing or filtering)
before the data is provided for the application. Both centralized as well as distributed event

processing is supported. The data coming from the devices can be used for online applications but

will also be persisted in order to use this data for bottom-up historical data analysis.

The context of the user is an important way to identify situations and provide the user the best

support. For this a domain model can be defined which allows the ebbits system to identify
situations and react in a proper way. The data enrichment is also based on the domain model so

that incoming data is identified by the sending sensor and e.g. related to a room that is defined in

the domain model. This could be used for example to easily query for “temperature in room 123”.

In order to better understand the business processes and to identify optimization potential it is

necessary to get detailed information. The ebbits system allows defining a business process model
and enriching the gathered data with the process step information automatically. In this way the

user could analyse in which process step an unusual amount of energy was consumed and further
investigate it. The gathered data can then be used in other optimization tools to reduce the energy

consumption.

Existing business systems that are already installed in companies can easily be integrated and the
data coming from the ebbits system can be exchanged. This allows for providing the business

systems with much more detailed data that can be used to e.g. control the production processes or
allow for more detailed analysis of the data and ultimately better business decisions.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 6 of 32 Submission date: 2013-08-31

2. Introduction

One key aspect of Internet of Things (IoT) applications is that data from various sources will be

used to provide new functionalities. These data sources can be potentially spread over the whole

world and another aspect is the large number of data sources that can potentially be integrated.

In the ebbits project we will develop a platform that support both distributed as well as centralized

data sources. Delivering the right data to such systems also means that collected data needs to be
interpreted and probably transformed into a fitting format. For this we have developed an interface

to connect any kind of sensor to our platform regardless of manufacturer, wired or wireless

connection as well as independent of supported protocols by the device.

We will show how a model-based approach is used in order to enrich gathered information

automatically and semantically and what kind of possibilities one can use for processing the
gathered events. We process the data in order to get the context of entities and derive situations

that are beyond simple comparison of threshold values. This can be used to detect possible
machine breakdowns before they happen and a support crew could be informed to do maintenance

on this particular machine before production needs to be stopped.

In order to provide data for optimization of e.g. energy consumption a process-based monitoring is
included in the ebbits platform. This allows to aggregate data based on the process steps coming

from a BPMN (Business Process Modelling Notation) model and allow for a much more detailed
analysis than is currently possible.

Distributed and centralized business intelligence (BI) means the usage of data coming from

centralized or distributed data sources and the integration of those. For the business aspect it is
also important to be able to connect to business applications e.g. Enterprise Resource Planning

(ERP) system that have a widespread usage. This is especially important in Manufacturing Execution
Systems (MES) because e.g. in production external applications are not allowed to tinker with the

processes and take over control of machines.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 7 of 32 Submission date: 2013-08-31

3. Distributed and centralised intelligence

3.1 Sensors and Devices

Each IoT system is inherently dynamic due to the mobility of physical entities and IoT devices from

which it consists of. If we use the terminology of the IoT-A project (IoT-A D4.1, 2011) we can state
that IoT applications use virtual entities as digital representations of physical entities, which could

be monitored or operated by devices. Devices are either attached to the physical entities directly or

the physical entities are in their operation area. The software part of the device that provides
information on the entity or enables controlling of the device is a resource. The functionality

implemented by the resource is exposed by services. Services provide well-defined and
standardised interfaces, hiding the complexity of accessing variety of heterogeneous resources. The

interaction with a physical entity can be accomplished via one or more services associated with the

corresponding virtual entity (IoT-A D2.1, 2012).

In order to deal with entities, devices and services in IoT applications properly, we need

identification scheme(s) that enable resolution in wide sense. By resolution in a wide sense we
mean not only mapping names or identifiers to locators or addresses for access purposes, but also

discovery and lookup functionalities. Regarding the discovery functionalities, ebbits utilises semantic

approaches based on semantically annotated resources, as the majority of current IERC projects do
(IERC-AC2 D1, 2013). Details about the use of ontologies can be found in (D4.M36, 2013) and

(D9.5, 2013).

Regarding the identification of entities, ebbits provides global service for assigning of unique

identifiers. This service is offered by the Entity Manager deployed as a cloud service. Entity Manager
assigns world-wide unique identifiers (random generated numbers) that can be persistently stored

and used by ebbits applications. Input of the service for creating unique identity is any local

name/ID and anytime later could be added further local aliases of created unique identity. Details
about identity management for entities provided by ebbits can be found in (D8.8.2, 2013).

If a persistent unique identifier would violate e.g. privacy requirements of an ebbits application, the
virtualisation functionality of the ebbits middleware could be used. It has been realised by applying

the concept of a semantic-free addressing layer provided by the underlying LinkSmart middleware

that uses Virtual End Points to address services. As these end points neither do provide any
information about the resources they represent nor can be assumed to be persistent, they allow

addressing entities without tracking them – thereby enabling the creation of “virtual”
devices/entities exposed as services (D8.8.1, 2012).

The semantic modeling of devices is directly supporting the idea of a Model Driven Architecture.
The basic idea is to create the models of all devices, which are used in a concrete application.

These models serve as prototypes, which are in the deployment phase tied with the set of physical

devices with concrete persistent identifiers assigned by the middleware. Those identifiers enable
finding of related physical device instances for the real device already existing in the ontology. The

instances of expected physical devices are created in advance following the needs of application.
This approach is based on expectations for the context modeling, which must be precisely defined

for each application, for example, to be able to determine concrete devices in concrete locations or

concrete devices attached to context entities (e.g. animals or robots).

The logic behind dividing devices to models and physical devices is that some of the physical

devices are simply based on the same model (even having the same events), e.g. set of the same
type of RFID readers (with different persistent identifiers) placed at the same location. To enable

the contextual modeling flexibility, the location could be physical location, such as pigsty, but also a

specific context entity, such as a door.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 8 of 32 Submission date: 2013-08-31

Figure 1: Illustration example of device modeling

The illustration example in Figure 1 shows the two tag readers placed at the pigsty door having the

same model (but different persistent identifiers assigned by middleware). This approach enables to
easily retrieve whole context surroundings for each device.

The ebbits device model is aligned with IoT-A reference model (IoT-A D2.1, 2012) extended for
purposes of ebbits (see also (D4.M36, 2013) for description, how ebbits ontologies were adapted to

IoT-A reference model).

The approach of having instances of physical devices in ontology makes sense, where concrete
devices are tied to the concrete context, which has to be resolved for each physical device

separately.

3.2 Event processing mechanisms

The next step is to show how events and data from devices are handled, stored and distributed. We

also show what kind of data annotation can be done automatically and what kind of models and
mechanisms are available for this. For a detailed description of the ebbits event and data (thing)

management architecture see D7.6.1 (D7.6.1, 2013).

3.2.1 From simple to complex event processing

Event processing in ebbits takes place on several layers in the architecture. Low-level (“raw”)

events are received from the physical world via the PWAL interface. From then on, several
components can process and re-distribute the (possibly transformed) events in different ways.

The LinkSmart event manager is part of the overall ebbits event management architecture. This is

an implementation of the basic and well-known publish and subscribe event processing paradigm,
and provides a simple form of event semantics by means of Topic lists. The LinkSmart publish and

subscribe event manager is suitable when event structure and semantics are less complex and
when a loosely coupled distribution mechanism between publishers and subscribers is suitable. In

order to support Complex Event Processing (CEP) using additional distribution mechanisms such as

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 9 of 32 Submission date: 2013-08-31

direct addressing, Event Processing Agents (EPAs) where introduced. EPAs provide rule processing
capabilities, filtering and annotation functionality. Several instances of EPAs can be used to form an

event processing network (EPN), in the same processing context (e.g., a server node) or over

several processing nodes, such as those involved in a traceability process.

Supporting CEP implies the provision of complex event data structures, as well as semantic models

over these events, which is provided by the ebbits ontology framework (which can also support
domain, context and service models). The EPAs use the event ontology for matching and for

semantic annotations of events and can execute rules expressed over the ontology contents.

The CEP in ebbits also supports event persistency by means of storage services. This allows us to

keep event histories, to express rules and queries on past events, which can be used in fall-back

and recovery mechanisms.

The LinkSmart Pub-Sub implementation may not be appropriate in a highly distributed environment

with large numbers of event producers. For more high frequency event processing a complementary
event manager solution has been implemented. The purpose is to provide the “first line” processing

of massive event streams such as those that are produced by the sensors in applications like the

ebbits manufacturing scenario. The solution is based on the existing 3rd party tools Storm (Storm,
2013) (for data stream processing) and Kestrel (Kestrel, 2013) (for message queuing). These

represent techniques currently been applied to applications that process high frequency/volume
(“big”) data. More details about the Storm/Kestrel based approach is reported in the accompanying

deliverable (D7.6.1, 2013).

3.2.2 Centralised and distributed processing

The ebbits system supports the notion of a “thing”, which is used to represent any physical or

digital entity (c.f. the IoT-A information model mapping to ebbits, (D4.M36, 2013)). The event
processing mechanisms with EPAs and event managers are used for distributing the processing

intelligence (based on rules). The role of the thing and the corresponding Thing Manager is to
coordinate the gathering, transfer and storage of any data and events that can exist for an entity

(in present and past).

A basic structure, a Product Service Orchestration (PSO), is used as a “container” for events, data
and services that pertain to a thing of certain type. The PSO thus references several of the ebbits

ontologies.

Figure 2 below shows an example of a PSO from the ebbits demonstrator application on traceability.

<?xml version="1.0" encoding="utf-8"?>
<product modelRef="EbbitsProductOntology" type="beef">
 <startCondition>
 <event type="cowBorn"></event>
 </startCondition>
 <stage type="livingInFarm">
 <startCondition>
 <event type="cowBorn"></event>
 </startCondition>
 <thingProperties>
 <services>
 <basicThingData/>
 <!-- Thing meta data -->
 </services>
 </thingProperties>
 <lifeCycle>
 <services>
 <feed modelRef="ServiceOntologyID">
 <frequency type="daysInBetween">1</frequency>
 <!-- Search criteria for selection service -->
 </feed>
 <medication modelRef="ServiceOntologyID">
 <event type="medicationAdministered"/>

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 10 of 32 Submission date: 2013-08-31

 </medication>
 <raisingCondition modelRef="ServiceOntologyID">
 <event type="onStageExit"/>
 </raisingCondition>
 </services>
 </lifeCycle>
 </stage>
 <stage type="transport">
 <startCondition>
 <event type="animalToSlaughter"></event>
 </startCondition>
 <thingProperties>
 <services>
 </services>
 </thingProperties>
 <lifeCycle>
 <services>
 <distance modelRef="ServiceOntologyID">
 <event type="onStageExit"/>
 </distance>
 <time modelRef="ServiceOntologyID">
 <event type="onStageExit"/>
 </time>
 </services>
 </lifeCycle>
 </stage>
</product>

Figure 2: A PSO from the traceability demo (partially instantiated)

A Thing is represented by the PSO and the set of software managers (e.g., a Thing Manager and a

Service Orchestration Manager) that interprets and acts on the PSO. In this context the EPAs (and
event managers) are used to process events, e.g., by filtering and annotation, and also to control

the transfers of data and events related to a thing between the steps in a process1.

3.2.3 Event ontology and semantic annotation of stored data

This section will focus on the semantic annotations extending the support for eventing. The detailed

description of ebbits event ontology can be found in (D7.3.2, 2012). The ebbits event model aims to
describe the complete structure of all events which are used in a concrete application. These

models are created based on application requirements in advance and they are tied with the
sources that are producing them. The event models are supporting the eventing process by

prescribing the event structures and the connection to the context entities which may be used to

extend the basic event information and to retrieve several taxonomies such as hierarchies of event
topics etc.

But for purposes of additional analysis of stored historical data, the basic event models often do not
contain enough information. Thus the basic event model must be extended with additional

information to be easily available for further queries on stored data (see section 3.2.4 Examples of

semantic support for historical data analysis). Updates of the event ontology enables the extension
of event data by additional information in form of semantic annotations – the pointers to several

parts of ontology – which are stored with event data and later used as keys to easily filter and
retrieve very specific stored data. This approach practically optimizes the retrieval of stored data.

The basic event model extended with semantic annotations is depicted in Figure 3.

1
 In addition to EPAs a number of other manages are also involved in such processes, e.g., see the Traceability

Demonstrator description D9.5.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 11 of 32 Submission date: 2013-08-31

Figure 3: Extension of event model with semantic annotations

The idea behind the annotation approach is very simple. The specific events may have attached
application (expected analysis) dependent annotations to relevant parts of the ontology. This is

modelled using a hierarchy of EventAnnotation concepts which prescribe what data should be

additionally stored with event as well as what entities are tied with this data and how these
relationships should be interpreted by a rule engine or further data analysis algorithms. As an

example Figure 4 shows annotations to context entities, entity properties, devices and locations.
The domain ontology containing context entities and their relations serves as the common

vocabulary and they are expected to have the uniform interpretation. It is quite straightforward to

specify in application logic how to extend event data with very concrete information (for further
explanation of common vocabulary and its interpretation see (D4.M36, 2013)). To enable several

combinations of additional properties the event may have attached as many annotations as needed,
following the needs of further data processing or retrieval. The simple example of concrete event

extended with annotations is illustrated in Figure 5.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 12 of 32 Submission date: 2013-08-31

Figure 4: Example of event with semantic annotations

The example shows the event generated by tag reader when a pig passes the door. The event is

extended with three annotations which are processed by the rule system in uniform way following

the vocabulary interpretation, for example:

 entity annotation referring to the entity type – the pig instance – entity annotation adds

reference to the entity ontology instance thus all data pointing to the pigs can be directly

retrieved

 entity property referring to the id property – the annotation is interpreted by a rule engine

which adds the concrete value of an id property if it is available, thus all data pointing to a

concrete entity can be retrieved (this makes sense to be used in combination with the
annotation referring the entity type)

 a location reference pointing to the concrete location (does not matter if it is the concrete

place or concrete entity) thus all data at concrete location can be easily retrieved.

Following the semantic annotations specified for a concrete event the rule engine will interpret it
and extend the stored event data with respective XML structure which will later serve as the WHERE

part of query for data retrieval. The extension XML structure would look as follows:

<semantic-annotations>

<annotation modelRef=”ebbits:EntityEventAnnotation”>ebbits:pig</annotation>

<annotation modelRef=”ebbits:EntityPropertyEventAnnotation”>

<annotation-property>ebbits:id</annotation-property>

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 13 of 32 Submission date: 2013-08-31

<property-value>concrete ID added by rule engine</property-value>

</annotation>

<annotation modelRef=”ebbits:LocationEventAnnotation”>ebbits:sty</annotation>

...

</semantic-annotations>

Figure 5: Example of semantic annotations for events

Using this approach the types of annotations can be extended in various ways where each
annotation type allows for the uniform interpretation in application logics. Examples of usage of

semantic annotations will be described in the following chapter.

3.2.4 Examples of semantic support for historical data analysis

The semantic support for processing of stored data is realised by using the annotations stored with

events generated within the ebbits platform. This solution is very straightforward and ebbits
specific. The stored data can be easily queried and filtered using the combinations of semantic

annotations. Addressing the concrete combination of semantic annotations enables to directly
retrieve very specific data which may be used in very specific ways. It can be used both in the real-

time phase to support more complex decisions as well as in data analysis which processes the

historical data in a bottom-up manner.

We provide two simple examples of bottom-up historical data analysis.

Off-line example: manufacturing scenario

The first usage of semantic event annotations happened in the M24 demo. There were several

voltage and ampere sensors attached to several parts of the welding robot. Parts of the robot were
modelled as embedded context entities, to each context entity there were attached particular

sensors. Event data measured at several parts of robot were semantically annotated to the sensor

type and concrete part of the robot. The robot working cycle was monitored for a longer time (in
our case several days of continuous running) and annotated data was stored. At the end of the

experiment we collected gigabytes of data.

The purpose of the scenario was to create the typical behaviour of each part of the robot using the

data measured at each part. The stored data was analysed for each particular part and based on

this analysis the behaviour model for concrete parts of the robot was created. This model was
created in a bottom-up manner by off-line processing. The results of the analysis were later used in

real-time diagnosis in order to detect if a robot's performance is within the boundaries of its typical
behaviour, otherwise the alert event was created. Semantic annotations were used to filter and

retrieve data tied with the concrete parts of the robot and values measured by sensors attached to

particular parts. The example of the bottom-up analysis result is illustrated in Figure 6.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 14 of 32 Submission date: 2013-08-31

Figure 6: Example of bottom-up data analysis using semantic annotations

The picture shows the result of the analysis of data stored for one concrete sensor attached to a

concrete part of the welding robot. The red line shows the average values computed from all robot

cycles continually measured over several days. The green line shows the model of typical behaviour
of robot part in terms of minimal and maximal values representing the boundaries of normal

behaviour.

Farm application scenario

Another – hypothetical – example is the monitoring of drinking patterns for groups of pigs. The
scenario can be described as follows: In the pigsty is a drinking place with water. To the drinking

place a sensor is attached, continually measuring the amount of water consumed by a group of
pigs. For a group of pigs of a certain size there exists the typical drinking pattern during a specific

time period. If a deviation of the actual drinking pattern against the typical one occurs there is
possibility that a disease in the group of pigs has spread.

The solution is very similar to the manufacturing scenario. In a very simple way the event data

produced by each sensor measuring the decrease of consumed water are annotated to the location.
The measured data are processed once per time period, a drinking pattern is computed and

compared to the typical drinking pattern. When there is the violation against typical pattern, the
alerting event is raised.

In this very simple way, the semantic annotations can be used practically for any required bottom-

up data analysis.

3.3 Domain model

The domain model is used to combine the devices and their events and process them to get a

context. Here we would show how this will be modelled and how this looks like for centralised and
distributed setting.

Sensor data delivered by the event manager might not be too useful for the users without knowing
the contextual information such what objects are being measured, what properties of the objects

the sensor data represent or when the measurements are taken.

Contextual information can be captured from the domain model of the application. In WP5 a
development tool is developed to support ebbits developers correlating sensor stream and domain

model to achieve contextual information for the application (D5.6.1, 2013).

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 15 of 32 Submission date: 2013-08-31

The tool allows developer to use a model driven approach to correlate sensor stream to the domain
objects and their properties visually. After the model is done by the developers, they could generate

java code that encapsulates the sensor technology. The generated java artefacts will expose plain

java objects (POJOs) whose properties will be updated automatically by the generated code based
on the sensor data. This way, developers will get the contextual information without having to know

details of the sensor technology (see Figure 7).

Figure 7: Abstraction of Sensor Data

A visionary scenario of an IoT system is illustrated in Figure 8, in which service providers run their

business by providing new services enabled by IoT. This scenario follows the trend of IoT brokerage
such as Xively (Xively, 2013). In this scenario, the service providers are required to develop proxies

for their sensors and actuators to expose the offered services. The discovery manager will find
these proxies using WS-Discovery (WS-Discovery, 2009) protocols and extract the service

information such as the address, device capabilities, unit of measurements, etc. It will then update

the global knowledge about devices in the ontology which in turn will be synchronised among other
discovery managers on the LinkSmart through P2P (Peer to Peer) network so that all of them have

the same knowledge about the available services. During development, this knowledge will be used
by the application developers to find IoT services based on their needs.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 16 of 32 Submission date: 2013-08-31

Li
n

kS
m

ar
t

P
2

P

Li
n

kS
m

ar
t

P
2

P

Discovery
Manager

Ontology

Proxy

Proxy

Proxy

Proxy

IoT Prototypes

Domain Modeldiscovers

updates

MDD Tool

Domain Model

generates

Online Dictionary

learns From

Admin

teaches

Business Logic &
Rules

User Interface

Service Provider 2

Service Provider 1

develops

develops

Device

Sensor
Network

Device

Device

Apps Developer

creates models

creates

creates

finds devices

IN
TER

N
ET

Proxies

 Figure 8: The envisioned prototyping toolkit for IoT

The discovery manager uses an online dictionary to detect different synonymous terms used by
different service providers to describe their devices. The technique to handle synonyms is described

in (Tsai et al., 2011). The synonyms and device classification structure is constructed in an ontology
allowing developers to find devices based on semantic criteria e.g. subset of a device class,

capabilities.

The semantic discovery will also be useful during runtime as the application might search for
alternative services when the initially bounded service is not anymore available or when it performs

below the quality threshold. Although quality of service is beyond the scope of this research, the
discovery manager provides the necessary infrastructure for QoS mechanisms.

As depicted on the right side of Figure 9 the apps developer will use the Visual context modelling
tool to create the application domain model and connect these domain concepts with the device

proxies that have been discovered by the discovery manager. The developers could query the

discovery manager to find device proxies according to their semantics such as capabilities and
functions as well as their synonyms.

Figure 9: Visual context modelling tool prototype

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 17 of 32 Submission date: 2013-08-31

 After the domain model and the correlation to the sensor is done by the developers, they also need
to specify the information needed to configure the input and output streams e.g. if the data comes

from the LinkSmart event manager. The developers are required to specify the description of the

event manager and the topic of the event so that the generated code is able to find the event
manager and subscribe to the corresponding events. They could also choose to publish a LinkSmart

event when the properties of domain objects change by linking the domain model to the LinkSmart
Event component on the output side.

As depicted in Figure 10, the information about the domain model and the events generated by the
domain objects is stored in an XML Metadata Interchange (XMI) format which can be used by the

business process engine to correlate the contextual events with the running business process. This

will be described in more detail in the next section.

Figure 10: XML Serialization of the domain model

3.4 Business-process-based data gathering

3.4.1 Basics

In a production environment such as an automobile manufacture, a lot of business processes can

be found. These can include salary accounting, the supply of needed items or the assembly of a
certain kind of car.

In ebbits one goal is the implementation of optimization metrics, including energy savings, in
manufacturing processes. To implement these metrics first the energy consumption must be
determined. To be able to optimize it is obviously not enough to know how much energy in total the

assembly of a car consumed. There are different approaches to get a more fine-grained break down

<?xml version="1.0" encoding="UTF-8"?>
<linksmartapp:App xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:linksmartapp="http://linksmartapp/1.0">
 <virtualObjectContainer name="DM" output="//@outputContainer.0/@outputs.0
//@outputContainer.0/@outputs.1">
 <virtualObjects xsi:type="linksmartapp:StaticObject" name="Robot">
 <properties name="temperature" fusedInput="//@sensorFusionContainer.0/@sensorfusions.2"/>
 <properties name="powerConsumption"
fusedInput="//@sensorFusionContainer.0/@sensorfusions.1"/>
 <functions name="sleep"/>
 </virtualObjects>
 </virtualObjectContainer>
 <sensorFusionContainer name="SensorFusion">
 <sensorfusions xsi:type="linksmartapp:MovingAverage" name="MovingAverage1"
inputs="//@inputContainer.0/@inputs.0"/>
 <sensorfusions xsi:type="linksmartapp:MovingAverage" name="MovingAverage2"
inputs="//@inputContainer.0/@inputs.1"
property="//@virtualObjectContainer.0/@virtualObjects.0/@properties.1"/>
 <sensorfusions xsi:type="linksmartapp:SpatialAverage" name="SpatialAverage1"
fusion="//@sensorFusionContainer.0/@sensorfusions.1 //@sensorFusionContainer.0/@sensorfusions.0"
property="//@virtualObjectContainer.0/@virtualObjects.0/@properties.0"/>
 </sensorFusionContainer>
 <inputContainer name="InputStreams">
 <inputs xsi:type="linksmartapp:LinkSmartEventInput" name="powerSensor1"
fusions="//@sensorFusionContainer.0/@sensorfusions.0"/>
 <inputs xsi:type="linksmartapp:LinkSmartEventInput" name="thermometer1"
fusions="//@sensorFusionContainer.0/@sensorfusions.1"/>
 </inputContainer>
 <outputContainer name="Output">
 <outputs xsi:type="linksmartapp:LinkSmartEventOutput" name="EventManager:Comau"
virtualobjects="//@virtualObjectContainer.0"/>
 <outputs xsi:type="linksmartapp:SOAPOutput" name="SoapWS"
virtualobjects="//@virtualObjectContainer.0"/>

 </outputContainer>
</linksmartapp:App>

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 18 of 32 Submission date: 2013-08-31

of the energy consumption. The consumption information of a machine given by the producer can
be used, but it might not be clear if these values can be applied in the current environment and also

the consumption might not be the same for every process run. For example a machine might need

more energy with time as it requires some maintenance.

Another approach is to measure the consumption of each machine. While this is fine for certain

types of data analysis, there might not be enough data for other types of analysis. To have a
detailed analysis for one single process step, e.g. assembly of the right door of a car, might not be

possible.

By using a business process-based approach to monitor measured values such as energy

consumption, we enable a more detailed analysis. In this approach the business process is modelled

in required detail and the measured sensor data is mapped to one of the modelled process steps.
The data gained can be used to analyse single process steps or to compare a single process to itself

over time or to another implementation of the same process in another production site to find out
why one site is more efficient than another.

Another advantage of using a business process-based approach is that the processes have to be

modeled and the resulting models are a good way to visualize, explain and understand the
processes and make them known to employees or customers.

There are different ways to model business processes, for example EPC (Event-driven Process
Chain), UML (Unified Modeling Language) (especially activity diagrams), Petri nets, and WSBPEL

(Web Services Business Process Execution Language). They all have different disadvantages: EPC
and Petri nets have problems with representing complex situations and EPC additionally has no

standardization, UML is complex and might be hard to learn and is not often used in non-technical

areas, whereas WSBPEL is xml-based and has no graphical representation.

Another possibility to model business processes is BPMN (Business Process Modeling and Notation).

It was standardized by the Object Management Group (OMG) in order “to provide a notation that is
readily understandable by all business users, from the business analysts that create the initial drafts

of the processes, to the technical developers responsible for implementing the technology that will

perform those processes, and finally, to the business people who will manage and monitor those
processes” and “ to ensure that XML languages designed for the execution of business processes,

such as WSBPEL […] can be visualised with a business-oriented notation”. (BPMN 2.0, 2011)

3.4.2 Related work

(Estruch et al, 2012) present an approach called EDBPM (Event-Driven Business Process

Management). They claim that there is a need in production for an automated detection and
handling of particular situations. As events occur regularly in manufacturing they are used to detect

these situations: some situations might be detectable through simple events, but there are also
situations which can only be found via complex event detection. They model complex event

patterns via BPMN 2.0 and make the models executable. These patterns are implemented using the
occurrence of simple events and become part of the modeled production process as a sub process

loop.

The architecture they propose for the EDBPM IT-solution is shown in Figure 11. There are three
layers: a manufacturing connectivity layer to collect and transform events, the adapted BPM engine

to execute BPMN-processes including an “enhanced time window event handling” for evaluating
complex event processing correlation and “enhanced data processing tasks” for KPIs (Key

Performance Indicator) evaluation and the user interface layer which visualizes KPIs and enables

user interaction.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 19 of 32 Submission date: 2013-08-31

Figure 11: EDMPM general architecture schema

In order to validate the approach the authors propose that “some manufacturing scenarios […]
could be simulated into plant simulator software capable to interact with a BPM companion engine,

generating and receiving events to/from deployed process models to carry out the manufacturing
management logic including CEP correlation to identify new complex events and BAM (Business-

Activity-Monitoring) measures update logic to update KPIs values.”

This approach makes it necessary to have an extra layer with adapters for sensors, which are not

directly mapped to process tasks. It is not the authors’ goal to monitor the energy consumption for

later analysis, but to immediately detect unusual events which need a particular handling.

(Ameling et al., 2010) describe demand-side energy management (DSEM). The main goals are to

avoid peak demands in production and to flatten load shapes. To do so the energy supply and the
energy consumption must be known. In the paper the authors assume that the (local) energy

supply can be predicted, but the energy consumption must first be monitored in order to make

adaptions in the production process when the energy supply and the energy consumption do not
match.

Figure 12 depicts the architecture for the proposed system. The lowest layer provides the required
data, e.g. measured data of smart meters for one device or data received from external services,

either pushed to or pulled by the event bus which transforms all data into uniform events to which

components of upper layers can subscribe to. The event bus can also filter events out, quality-check
them and route events based on content.

The complex event processing (CEP) engine in the next layer analyzes processes and combines low
level events in order to create complex events based on predefined rules. In the persistency layer

events are persisted in a database. In the logic layer the analysis component is responsible for data
mining, e.g. discovery of abnormalities such as malfunctioning.

The last layer is the presentation layer, which visualizes the energy consumption on different levels,

e.g. on process, device and product level. The authors claim that this can later be connected to
external systems, such as a process execution engine, a business process modeling tool, an

enterprise resource planning system or a manufacturing execution system in order to give
optimization advices to production planners and to enable a semi-automatic production planning.

Their current prototype focuses the device connectivity and the visualization of smart meter

information.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 20 of 32 Submission date: 2013-08-31

Figure 12: Architecture DSEM

As for now the event handling is done via a CEP Engine. To monitor energy consumption of a
specific task, rules would have to be described in the CEP Engine. This is not a graphical tool and

requires training.

There are other works like (Ammons et al, 2008) where Business Process Modeling and Execution is

combined with CEP. Again the CEP is used for all the event handling and the Business Process

Execution provides the CEP with events.

In (Ghose et al., 2009) the authors describe an approach to account and model an organization’s

carbon emission, more precisely they describe an approach “that helps assess carbon emissions
from a process perspective, providing deeper insights into the role of tasks and processes in an

organization’s total emissions and revealing opportunities for future carbon-aware process re-
engineering.”

They use the accumulation of process annotations, i.e. carbon emissions in their example, through

the process to a selected task. The goal is to model a process with BPMN and during process
design, the carbon-footprint is calculated as to guide the analyst to the modeling process. This

means that during the entire modeling process the emissions which would have been emitted had
the process been executed up to the point of modeling are known.

The authors describe three scopes where greenhouse gases are emitted which can be expressed in

carbon-dioxide equivalent: scope one are direct emissions which result directly from activities within
the organization, such as combustion of fuel. Scope two emissions (indirect) include emissions

which are externally emitted, but are brought within the organization such as electricity. The third
scope includes indirect emissions which are not part of scope two, e.g. emissions from material.

Their tool for process design maps carbon-dioxide emission to design elements and calculates
secondary footprint measures by propagating primary measures through a process model.

To achieve this, among other things, it is necessary to model carbon emissions related entities and

their relationship to determine the emissions of a single task. The authors use a top-down and a
bottom-up approach for this. The first one is based on the knowledge of the total consumption per

period of time and the authors use principles of cost accounting to assign electricity consumption to
shared resources and to tasks from a source such as an electricity bill or the measurements from a

smart meter, so they do not have to determine all single electricity devices and their average

consumption. In the bottom-up approach the consumption of single devices is considered in case
they consume a considerable amount of electricity for which the average consumption is known or

worth determining.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 21 of 32 Submission date: 2013-08-31

Although this approach maps energy consumption to single process tasks, it is meant for
redesigning existing processes and not for monitoring. Values of current process executions are not

included, information about the average consumption is used, which might not even be measured,

but given by a manufacturer.

3.4.3 Monitoring

BPMN overcomes most of the disadvantages of the other modeling approaches. Additionally there
are open-source engines available which provide the possibility to execute BPMN Models, such as

the Activiti-engine (Activity, 2013) and an open-source modeling plugin for eclipse (as well provided
by Activiti). Activiti is based on Java, XML, and common database technologies which provide the

possibility of an easy integration of business systems such as SAP.

Therefore we will use BPMN and Activiti tools in ebbits in order to monitor sensor values like energy
consumption. The process engine will receive events via the LinkSmart Event Manager. These

events either contain information about sensed data or information about the beginning/end of a
process step.

Figure 13 shows a simplified model of a production line in the Activiti Designer which is a plugin for

eclipse. The model itself is stored in xml-format. It consists of a MessageStartEvent, a ServiceTask,
several MessageCatchEvents and ReceiveTasks alternating and an EndEvent.

Figure 13: Activiti Designer in Eclipse

For each MessageStartEvent, MessageCatchEvent and ReceiveTask (which are all wait-states

waiting for a message or signal to arrive), a message topic can be defined which ends the waiting
state and makes the process continue. Events containing data about measured consumption will be

enriched and stored in a database from which data can be analyzed.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 22 of 32 Submission date: 2013-08-31

For each task code can be implemented to help monitor the process. For example, it will be possible
to define certain thresholds defining when a sensor value is too high or too low so that certain

measures can be taken. The Java code could contain a check and in case the temperature is too

high an email is sent to the responsible person.

It would also be possible to build some controlling components into the process (e.g. turn of the

robot if it becomes too hot), but for most production environments this will not be desirable as
controlling the production is complex and a controlling system is already in place.

3.4.4 Data Enrichment

Events stored in the database by the monitoring application will have additional information in

comparison to the events sent via the LS EventManager. The data will contain information about the

process instance they were measured in, the process step they belonged to as well as creation time
in the database. In case there is already some processing during the execution of the business

process (such as determining if a measured value is in the desired range) the results can be
persisted as well.

The additional data gives the opportunity to make additional analyses based on processes or

process steps. If a car manufacturer has more than one production site producing the same kind of
car, he could compare the different process implementations. As customers attach more and more

importance to products’ ecological footprints, the data might proof helpful to give a breakdown of
total consumption for a single car produced.

3.4.5 Tool support

We will use BPMN in combination with Activiti in ebbits to provide a tool for developers helping

them implement IoT applications which include business-process based monitoring.

When there are many sensors the topic definition for each of the modeled MessageEvents/
ReceiveTasks would be very time-consuming and prone to error if the modeler had to define

everything by hand. Therefore it should be possible to map the MessageEvents/ ReceiveTasks to
the topics defined in the domain model.

The file with the XML serialization of the domain model (example shown in Figure 10) will be read

by the new tool and the selection of a sensor (or even the selection of a robot) can be done via a
menu. The corresponding event topic will be mapped to the selected wait-state, which means that

when a process instance of the business process model runs, a wait state will only be left if a
message comes with the mapped topic.

There might be several events coming which just update the measured value and which are not

supposed to end a wait state. In the process depicted in Figure 13 for example, there might be
updates in the “Weld body” process step every second, resulting in events being sent every second.

These events might include the current energy consumption of the welding robots and should be
persisted, but they should not end the process step. Therefore a second kind of mapping must be

included which includes measurement events.

Figure 14 gives an overview of the components involved when developing a monitoring application.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 23 of 32 Submission date: 2013-08-31

Figure 14: Overview components for tool support

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 24 of 32 Submission date: 2013-08-31

4. Business intelligence and integration

4.1 Integrating Business Intelligence Data for Enterprise Information and Resource

Planning Systems

The objectives for ebbits state that “the ebbits architecture contains distributed information systems

on the one hand and integrated enterprise information and resource planning systems on the other
hand”. In this section of this deliverable, it is described how to integrate gathered data from the

ebbits middleware into enterprise information and resource planning systems and to do business

intelligence analysis on them. Thereby, we will focus on one of the use cases in ebbits, the
manufacturing scenario.

This scenario is about automobile manufacturing and described in detail in (D9.4 and D10.4). For
such scenarios, the most important enterprise systems are enterprise resource planning (ERP) and

manufacturing execution systems (MES). Furthermore, the work processes within a company, which
is assembling cars, are executed using orders. For production processes, production orders are used

to control production within a company and also to control cost accounting. (SAP PP, 2013)

Such a production order specifies which material is to be processed, at which machine, at what time
and how much work is required. This is also depicted in the upper part of Figure 15. Furthermore,

such an order also postulates which resources are to be used and how the order costs are to be
settled, which is represented graphically in the lower part of Figure 15. (SAP PP, 2013)

Figure 15: Parts of a Production Order, Source: (SAP PP, 2013)

As can be seen from Figure 15 such an order is very complex as it covers a very broad range of

different areas and could contain hundreds of value fields (for details the reader is referred to (SAP
PP, 2013)). Furthermore not all values will be available at all time, for example during execution

shop floor control adds order-relevant data to it to guarantee complete order processing. It depends

very much on the business intelligence task at hand, which data should be measured, analysed or
reported. On the same level, the integration with business intelligence data gathered and analysed

by the ebbits distributed intelligence mechanisms will be subject to the tackled topic.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 25 of 32 Submission date: 2013-08-31

Due to the inherent complexity and for the easy of exposure, we will show the general integration
mechanism for business intelligence data exchange and analyis for decision making involving both,

ebbits distributed intelligence and traditional business intelligence mechanisms, by using very

simplified examples.

For the data exchange of business intelligence data between the ebbits middleware and enterprise

systems we propose to use SAP NetWeaver Gateway connectivity framework. This framework was
already introduced in detail in deliverable D6.9 and therefore, only the summary is given here:

Gateway has a RESTful architecture and uses the Atom (Atom Syndication, 2005) and the OData
(Open Data, 2013) standards. This type of architecture supports the usage of the standard HTTP

GET, PUT, POST, and DELETE methods for server-side resource manipulation. Atom is a pair of

standards: the Atom Syndication Format and the Atom Publishing Protocol. Atom is the de facto
standard for treating groups of similar information snippets as it is simple, extensible, and allows

anything textual in its content. The Atom standards do not specify how data should be encoded
within such a group. However, as so much textual enterprise data is structured, there is also a

requirement to express what structure to expect in an information snippet. Therefore, the used

OData web protocol for querying and updating data extends Atom by defining a set of conventions
for specifying structured data. Thereby, the goal of this protocol is to offer database like access to

business data – “ODBC for the Web”. The OData standard uses an underlying abstract data model
called Entity Data Model (EDM) - which is employed by OData services to describe the structure and

organization of its resources. OData is also extensible and one such described extension is OData
for SAP applications, which contains SAP-specific metadata that helps the developer to consume

SAP business data (D6.9, 2013).

As an example for the contemplated manufacturing scenario, consider the meta-data of a Gateway
service to exchange energy consumption data and error reporting depicted in Figure 16.

Figure 16: The Meta-Data for the Ebbits Manufacturing BI Data Exchange Service

In Figure 16 one can see the most important parameters for this simplified example in the
manufacturing scenario expressed in the OData format. The service is constructed by the SAP

NetWeaver Gateway connectivity framework on the basis of the internal data structure as shown in
Figure 17. As they are many clients available to access an OData service for consumption (see also

(D6.9, 2013)) and for data exchange, the ebbits distributed intelligence could, for example,

determine the overall energy consumption for one car body through retrieving the data for every
process step and then report the overall sum to the enterprise system for further business

intelligence analysis. Of course, the exchange is bidirectional, so for example, after determine with

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 26 of 32 Submission date: 2013-08-31

predictive analytics that a machine will need to undergo maintenance very soon, the enterprise
system could tell the middleware to operate this machine only at half speed.

Figure 17: A possible BI data structure for the ebbits manufacturing scenario

The above described business intelligence data exchange at pre-determined time points may not be
enough. If the business intelligence analysis on either side (distributed or enterprise) leads to

results that call for an immediate decision, we further propose a rule based system to be able to
define and execute business rules and to perform complex event processing. One such system is

the Drools Business Logic integration Platform. It contains the modules expert as a rule engine and

fusion for complex event processing. Drools was already introduced in deliverable 6.1 and the
reader is referred to (D6.1, 2011) for a detailed description. Using Drools one could setup another

monitoring and execution service which receives events from the business intelligence analysis of
the distributed and the traditional business intelligence mechanisms. If for example, one or more

customers in the manufacturing scenario reduce their request for car bodies, this information will

turn up in the enterprise system and then the following rule could be used to save energy at the
shop floor through forwarding it to the middleware.

declare QuantityReduced
 @role(event)
 @timestamp(timestamp)
end

rule "Reduce Speed to Save Energy"
 when
 $e1 : QuantityReduced(Material.amount=1);
 then

 ReduceSpeed(Machine.status=”reduced”,Machine.speed=50,$e1.getTimest
amp());

end

In the other direction, the distributed intelligence may deduce from sensor readings that a machine

is now broken. This has consequences for the business and the following rule would catch this
event and update the end date of the order in the business system.

declare MachineBroken
 @role(event)
 @timestamp(timestamp)
end

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 27 of 32 Submission date: 2013-08-31

rule "Postpone Order"
 when
 $e1 : MachineBroken(Machine.status=”broken”);
 then
 Order.enddate = Order.enddate + 2;
 PostponeOrder(Order.enddate,$e1.getTimestamp());

end

4.2 Self-Service Business Intelligence with SAP Lumira

The ebbits middleware is envisioned to be deployed and used in a variety of scenarios and use
cases and taking into account very different end-users. These end-users, for example, farmers in

the traceability scenario, do not necessarily have the same technical knowledge as Business
Analysts or can rely on an IT department to do scripting for them. Instead, they want an easy-to-

use tool that delivers insight using a self-service approach without the need for IT to create

predefined or custom queries and reports. A “point and click” solution to manipulate, organize and
consolidate data and answer business intelligence questions in a visual way results in the quick

discovery of valuable hidden insights. One such solution is SAP Lumira which has the following
features to prepare and visualize/navigate business intelligence data (SAP Lumira Brief, 2013):

 Enriching the data with geographic and time hierarchies

 Automatically creating useful measures based on existing data

 Formatting and cleaning existing data (for example, duplicating, grouping, and trimming)

 Merging data sets based on a common attribute or key

 Adding sophisticated formulas without any coding

 Surface patterns and relationships by selecting chart types suited for your analysis (for

example, bar, radar, surface, tag cloud, bubble, and scatter charts)

 Identify trends with line and multiline charts

 Show the percentage of parts to a whole with pie charts and tree maps

 See the big picture at a glance and drill down into the details using filtering data in

columns, facets, and charts

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 28 of 32 Submission date: 2013-08-31

Figure 18: Drag-and-Drop to Filter, Transform and Visualize BI Data, Source: (SAP Lumira, 2012)

In Figure 18 some of the capabilities of SAP Lumira are depicted. On the left side of this figure, it is shown
how to simply use the mouse to select between different measures and various types of charts. On the right

side, the different possibilities to pre-process the data are portrayed. As all these possibilities can be

executed by a mere drag-and-drop and visualised instantaneously, SAP Lumira facilitates an iterative
thought process with a quick navigation of the results of the analysis and adaption of the queries.

For the considered manufacturing scenario, one could imagine, for example, that the manager of the

production plant wants to have a quick overview over the energy consumption in relation with the quantity

produced and dependent on a specific machine out of a set of similar machines and for different order
types. This business data is exposed by the enterprise system via the SAP NetWeaver Gateway connection

framework and could be loaded into SAP Lumira. The manager could then do some data cleansing if
necessary and a selection of the required parameters. The following visualization in SAP Lumira is now very

easy. The manager just has to define energy consumption and quantity as a so-called measure and drag-
and-drop them to the Y-axis for a bar chart. Furthermore, machine id and order type are added to the X-

Axis. The result is shown in Figure 19 where for this analysis mock-up data was used. The visualisation may

now be used by the manager to quickly determine which parts of the car consume the most energy and
which machine is the most energy-efficient. This analysis could furthermore lead to the appropriate

concentration of efforts for energy-savings with respect to car types and machines. More complex business
intelligence analysis and drill-downs for different business intelligence questions could also be quickly

visualised with SAP Lumira.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 29 of 32 Submission date: 2013-08-31

Figure 19: Energy Consumption and Quantity Produced in Dependence of Machine and Order Type

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 30 of 32 Submission date: 2013-08-31

5. Conclusion

In this deliverable we have shown our approach on how to integrate sensors and devices in a

distributed and centralized system. We use an interface layer to connect any kind of device to the

ebbits platform and allow for semantically describe the entities involved. We also semantically
enrich the gathered data in order to allow for complex event.

A domain model is the basis for processing events and generating a context from which additional
information can be derived. We plan to implement a tool that supports the development of such IoT

applications that combine a domain model with the actual sensors and therefore help developers.

An innovative aspect is the business-process-based monitoring and data gathering that allows for
new ways to analyse data and in combination with ERP and MES systems to optimize production

processes. We also plan to develop a tool for IoT developers to combine the business process steps
within a BPMN model with the domain model and the sensors connected to this model. This would

make it much easier to develop such complex applications. Also new ways of presenting the
production monitoring data to various stakeholders are possible.

The previously mentioned integration of ERP and MES systems was also shown with SAP systems as

an example. Such systems as SAP Lumira allow for non-technical persons to visualize the data
gathered by the ebbits platform without the need for IT support. By the ability of the ebbits

platform to export gathered data in standard formats like Atom or OData the connection to
enterprise applications can easily be accomplished and further processing in such systems is

possible. We plan to integrate such enterprise systems into the demonstrators for a distributed

system within the traceability scenario.

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 31 of 32 Submission date: 2013-08-31

6. References

(Activity, 2013) Activiti website, http://www.activiti.org/ [Accessed August 2013]

(Ameling et al., 2010) Ameling, M., Schief, M., Nietzold, F., Kuhn, C., “Demand-side Energy

Management Systems for Manufacturing”, SAP Research, GI

Jahrestagung (1), pp. 467-472.

(Ammon et al. 2008) Ammon, R., Emmersberger, C., Springer, F., Wolff, C., “Event-Driven

Business Process Management and its Practical Application Taking the

Example of DHL”, In Future Internet Symposium, Vienna, 2008

(Atom Syndication, 2005) Atom Syndication Format website,

http://tools.ietf.org/html/rfc4287 [Accessed August 2013]

(BPMN 2.0, 2011) Business Process Model and Notation (BPMN), Specification Version 2.0,

January 2011, http://www.omg.org/spec/BPMN/2.0

(D4.M36, 2013) D4.M36 Semantic Mechanisms and Models, EBBITS consortium, Aug.

2013

(D5.6.1, 2013) D5.6.1 Context awareness prototypes 3, EBBITS consortium, 2013.

(D6.1, 2011) D6.1 Design of business rules representation and execution, EBBITS

consortium, 2011

(D6.9, 2013) D6.9 Analysis, design and implementation of interconnection and

integration services, EBBITS consortium, 2013

(D7.3.2, 2012) D7.3.2 Implementation of Data and Event Management models, EBBITS

consortium, 2012

(D7.6.1, 2013) D7.6.1 Technical description and prototypes of data and event

management subsystems 1, EBBITS consortium, 2013

(D8.8.1, 2012) D8.8.1 ebbits network management & security framework 1, EBBITS

consortium, June 2012

(D8.8.2, 2013) D8.8.2 ebbits network management & security framework 2, EBBITS

consortium, June 2013

(D9.5, 2013) D9.5 Integrated platform prototype with main focus on traceability,

EBBITS consortium, June 2013

(Estruch et al., 2012)Estruch, A., Heredia Álvaro, J. A., “Event-Driven Manufacturing Process

Management Approach”, Business Process Management, Proceedings of

10th International Conference, BPM 2012, pp.120-133

(Ghose et al., 2009) Ghose, A., Hoesch-Klohe, K., Hinsche, L. Le, L., “Green Business Process

Management: A Research Agenda”, Australasian Journal of Information

Systems Volume 16 Number 2 2009, pp.103-117 Aditya Ghose,

Konstantin, Lothar and Lam-Son Le

(IERC-AC2 D1, 2013) IERC Activity Chain 2 Deliverable D1 - Catalogue of IoT Naming,

Addressing and Discovery Schemes in IERC Projects, IERC Activity Chain

Naming, addressing, search, discovery, Jan. 2013

http://www.activiti.org/
http://tools.ietf.org/html/rfc4287
http://www.omg.org/spec/BPMN/2.0

ebbits D6.5 Analysis of distributed and centralised BI and integration

Document version: 1.0 Page 32 of 32 Submission date: 2013-08-31

(IoT-A D2.1, 2012) Project Deliverable D2.1 – Resource Description Specification, The

Internet of Things Architecture project, FP7 257521, March 2012.

(IoT-A D4.1, 2011) Project Deliverable D4.1 – Concepts and Solutions for Identification and

Lookup of IoT Resources, The Internet of Things Architecture project,

FP7 257521, Dec. 2011.

(Kestrel, 2013) Kestrel Message Queue, http://robey.github.io/kestrel/ [Accessed August

2013]

(Open Data, 2013) Open Data Protocol website, http://www.odata.org/ [Accessed August

2013]

(SAP Lumira Brief, 2013) SAP AG, “SAP Lumira Solution Brief,” 2013. [Online]. Available:

http://www.saphana.com/docs/DOC-3592 [Accessed August 2013].

(SAP PP, 2013) SAP AG, “PP - Production Orders,” 2000. [Online]. Available:

http://help.sap.com/printdocu/core/Print46b/Data/EN/PPSFC.pdf

[Accessed August 2013]

(SAP Lumira, 2012) SAP AG, “SAP Lumira Presentation”, 2012.

(Storm, 2013) Storm website, http://storm-project.net/ [Accessed August 2013]

(Tsai et al., 2011) Tsai, D., Yushi Jing ; Yi Liu ; Rowley, H.A. ; Ioffe, S. ; Rehg, J.M.,

 “Large-scale image annotation using visual synset”, Computer Vision

 (ICCV), 2011 IEEE International Conference on, IEEE.

(WS-Discovery, 2009) http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01

 [Accessed August 2013]

(Xively, 2013) Xively website, https://xively.com [Accessed August 2013]

http://robey.github.io/kestrel/
http://www.odata.org/
http://www.saphana.com/docs/DOC-3592
http://help.sap.com/printdocu/core/Print46b/Data/EN/PPSFC.pdf
http://storm-project.net/
http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01
https://xively.com/

