

Enabling the Business-Based Internet of Things and Services

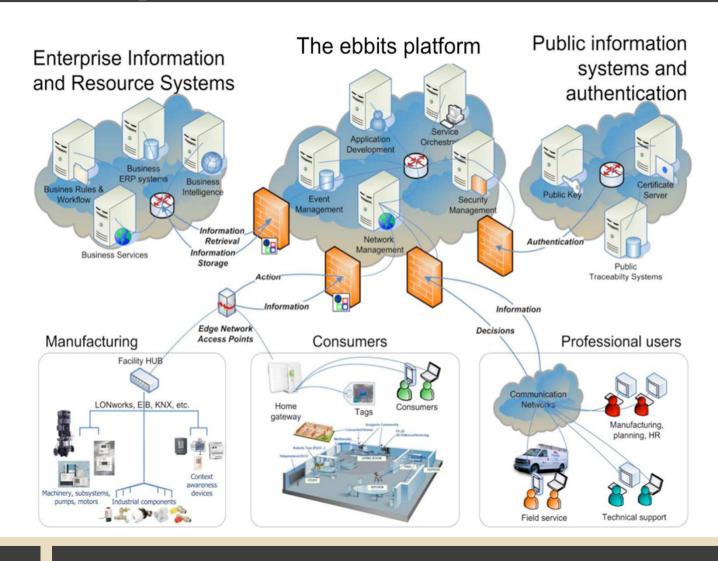
Cognitive/Self-IoT Opportunities,
Challenges and Approaches in EU Projects:
ebbits Perspective

18 June 2012

Claudio Pastrone ISMB

ebbits consortium

48 months /**9 partners/12,0 M€ budget,** 1091 pms.



Technical aim

- Develop an Internet of People, Things and Services (IoPTS)-based Service Oriented platform that allows entreprises to develop and deploy a new range of business applications
 - Everything is a service and can be integrated into enterprise systems
 - Physical world data feeds directly and seamlessly into mainstream business systems

Enabling technologies for the Internet of Things and Services

ebbits business scenarios

Car Manufacturing

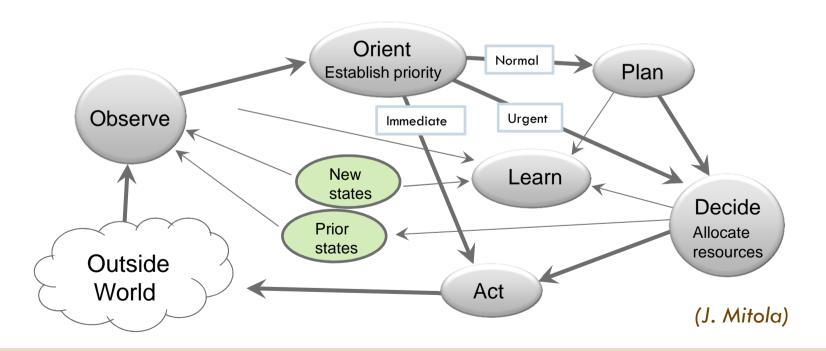
- Life cycle analysis in automotive industry
- Energy optimization of production process
- Performancemonitoring ofproduction process



ebbits business scenarios

□ Food traceability

- Life cycle management
- □ Product identification
 - Supply chain management
 - Logistics optimisation


Project challenges

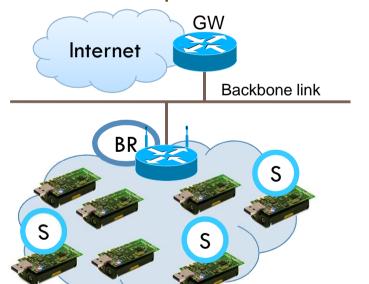
- Communication related issues
 - □ Car manufacturing scenario
 - Reliable and unattended operations in harsh environment
 - Adaptability to time-varying spectrum conditions
 - Food traceability scenario
 - Robustness to intermittent network connectivity
- Management of Core ebbits framework components
 - Resilience and adaptability to changing conditions w.r.t.
 - Network, processing and energy resources availability
 - Presence of failures

Proposed approach

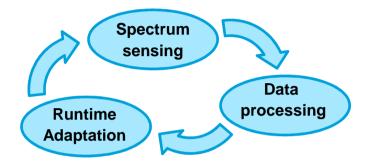
- Apply the cognitive process to support
 - □ Dynamic management of radio communication resources
 - □ Self-* properties

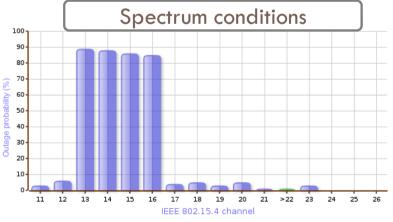
Management of communication resources

- Ability to adapt the use of radio communication resources/features by observing
 - □ the dynamic conditions/properties of the network or
 - the environment, and the specificities of each node and its neighbours
- The adaptation decision could be based on
 - physical radio constraints (e.g. interference and intermittent signal/no network connectivity) and
 - possibly on higher level context (e.g. application information)
- This results into enhanced communication flexibility and reliability.



Dynamic Frequency Allocation in 6LoWPANs




Dynamic Frequency Allocation

- Dynamic channel selection based on evaluation of current spectrum conditions (robustness against interference)
 - Sensing / throughtput trade-off
 - Decision policies

6LoWPAN

Self-* properties

- **Concept**: resources capable of managing their own behavior in response to higher-level goals, and interacting with other resources to provide or consume computational services
- Functional areas of a self-managing autonomous system (IBM)
 - □ Self-Configuration
 - Automatic configuration, deployment and removal of components
 - Self-Healing
 - Automatic discovery, and correction of faults
 - □ Self-Optimization
 - Automatic monitoring and control of resources to ensure the optimal functioning
 - □ Self-Protection
 - Proactive identification and protection from arbitrary attacks

Adaptation

Anticipated adaption

☐ The different contexts to be accommodated at run-time are known at design-time

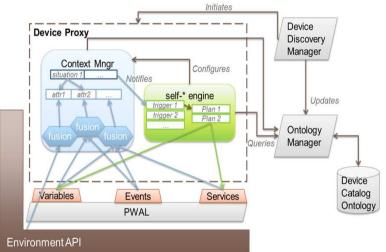
Un-anticipated adaption

- □ The variation possibilities are recognized and computed at run-time
- ☐ The decision which variant is best is computed using self-awareness and environmental context information

Pure un-anticipated self-adaptive systems are rare

 Most self-adaptive systems feature a combination of anticipated selfadaptation and un-anticipated self-adaptation

(Hausi A. Müller University of Victoria, Canada, IWPSE-EVOL Amsterdam, The Netherlands August 24-25, 2009)



Context-aware Approach

■ Definition of a **Self-* engine**

 receiving inputs from a Context Manager in charge of monitoring and analyzing the situations (related to devices and networks)

- executing plans according to high level policies
 - policies are defined using simple rules specifying which actions must be executed when a situation happens
- Drools could be used or possibly semantic DL reasoners

Open Issues

- Management of communication resources
 - □ Support *Scalability* towards the IoT vision
 - □ Optimize "observe" duty-cycle
 - Leverage on other context information to make decisions
- Self*-properties
 - ☐ Effectively handle *unknown situations*
 - Manage complex rules to define all possible situations

Thank you for your attention!