
Applying Flow-based Programming Methodology to Data-driven Applications

Development for Smart Environments

Oleksandr Lobunets and Alexandr Krylovskiy

Fraunhofer FIT,
Sankt Augustin, Germany

emails: {oleksandr.lobunets, alexandr.krylovskiy}@fit.fraunhofer.de

Abstract—This paper describes initial results of applying the
Flow-based Programming methodology to developing data-driven
applications for smart environments. This paradigm recently
gained popularity in creating concurrent data-driven applications
in a wider domain of distributed systems. We investigate this
approach applied to the smart environment applications domain
and compare it to the Object-Oriented approach typically used
in the framework of SOA-based middlewares for the Internet
of Things. Our preliminary results show that the Flow-based
Programming approach leads to a clear transformation of the
design architecture into the software implementation, speeds
up the development process, and increases code reuse and
maintainability.

Keywords–Flow-based programming; data flow; data-driven ap-
plication; smart environment; software engineering.

I. INTRODUCTION

The IoT (Internet of Things) is envisioned as an Internet-
like network of interconnected objects, which allows people
and things to be connected anytime, anyplace, with anything
and anyone, ideally using any path/network and any service
[1]. With the growth of the IoT deployments in recent years,
the data volumes generated by the IoT devices rapidly increase
[2], which is recognized by the industry as a motivation for
development of data-driven platforms [3]. Similarly, it poses
new challenges to the applications development, requiring Big
Data processing and dealing with real-time data streams [4].
Such data-driven applications, therefore, become one of the
most important classes in the growing IoT applications domain.

While the main concern of the IoT is to provide con-
nectivity at the network level, several related technologies
facilitating the applications development emerged in recent
years. Specifically, two major approaches are being adopted
in the research and industry communities: the WoT (Web of
Things) [5] and SOA (Service Oriented Architecture) based
middlewares [6].

The WoT proposes an HTTP-like protocol to build an
application layer on top of the IoT similar to the Web,
reusing the widely adopted standards and knowledge of the
Web applications development. It does not, however, define
a specific development paradigm, leaving this choice to the
application developers and the task at hand.

The SOA-based middlewares address the IoT devices het-
erogeneity by introducing device abstraction layers and enable

the integration of the IoT infrastructures with the existing
Information Systems. They leverage the developers knowledge
in the enterprise software development, where OOSC (Object-
Oriented Software Construction) remains by far the most
popular software development paradigm.

Despite the success of the OOSC in the broader soft-
ware development domain, our experience suggests that it
sometimes becomes a burden: applying its principles directly
to development of data-driven applications for smart envi-
ronments is challenging and often results in a significant
gap between the initial architecture design and the software
implementation. Looking for an alternative approach capable
of a better realization of the design ideas, we discovered the
FBP (Flow-based Programming) [7], which is a subset of a
more general Data-Flow approach to software construction [8].

In this work, we approach the task of developing a typical
data-driven application for smart environments. The smart
environment in our case is considered as a services and
applications layer on top of a general IoT infrastructure of
interconnected sensors, actuators, displays, and other vari-
ous computational elements, as originally described by Mark
Weiser [9]. We demonstrate the problems arising from em-
ployment of the conventional OOSC approach to this task and
share our experience in applying the FBP paradigm instead.
Our preliminary results show that FBP allows for a clear
transformation of the design architecture into the software
implementation, speeds up the development process, as well
as increases the code reuse and maintainability.

The rest of the paper is structured as follows: Section II
provides an overview of related work, Section III describes
the application domain and the software design process using
OOSC and FBP methodologies, emphasizing the benefits of
the latter. Section IV describes the details of our initial FBP
system implementation, and Section V provides a conclusion.

II. RELATED WORK

The WoT and SOA-based middlewares are the two main
foundations for the development of IoT applications. On the
one hand, mash-ups of the Web-enabled devices in the WoT
can be constructed similarly to the mash-ups in the Web 2.0 to
create ad hoc applications [10]. On the other hand, applications
can be built using a SOA-based middleware by composing
the services it provides. Such services may include both

216Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

WoT-like communication with devices through the middleware
abstractions, as well as more complex network-wide services
[6].

The WoT mash-ups use direct communication with Web-
enabled devices via a Web API, allowing application devel-
opers to reuse their Web-development experience and en-
abling rapid prototyping. However, when building complex
data-driven applications requiring communication with many
devices and data processing, using the WoT mash-ups alone
results in systems which are hard to scale and maintain. In
such scenarios, a more systematic approach to applications
development is needed, which is one of the core motivations
for development of SOA-based middlewares.

In addition to providing a unified API to the IoT devices,
SOA-based middlewares offer other services to simplify the
applications development. The data processing functionality
required for data-driven applications in such systems is typi-
cally implemented in the so-called context-awareness services
[6]. However, these services need the context models to be ex-
plicitly defined, effectively limiting the application developers
in the expressiveness of the supported modeling techniques.
Moreover, they rarely consider real-time processing of data
streams [6], which in practice means that application develop-
ers need to implement new services for the middleware itself.

With respect to the integration of the system components
using a messaging middleware, various integration solutions
and corresponding visual notation languages for connecting
distributed components are described by Hophe and Woolf
[11]. These patterns resemble approaches in the general Data
Flow methodology, but the described solutions mainly rely on
the existing enterprise software and protocols, which can be
overwhelming for the smart environment applications outside
of the enterprise domain. The visual notation employed in
these solutions is useful for System Architects and Business
Analysts to communicate the system design, but the actual
implementation usually follows a different control flow and
requires complex configuration and integration code depending
on the specific case.

FBP is a form of reactive programming [12] that was
initially developed at IBM in 1970s as a software development
paradigm, where an application is constructed as a network of
asynchronous processes exchanging data chunks and applying
transformations to them [7]. It has gained a momentum again
recently with the NoFlo project [13], which focuses on en-
abling visual programming based on the FBP methodology.
Several other industrial projects exploring similar principles
have appeared in recent years: Streamtools from The New York
Times R&D Lab [14], NodeRed from IBM [15], etc. All these
projects focus on the processing of data flows, which is a major
requirement of the modern data-driven applications.

III. DESIGN

Without loss of generality, we assume that our application
deals with the data from a large sensor network (IoT), which
is used for monitoring the energy consumption of a production
line. The connection to the sensor network can be established
using either a specialized IoT middleware [16], a publish-
subscribe bridge using a message broker [17], a Web-Socket
gateway, or a RESTful API. Using any of these technologies,

Figure 1. Static OOSC model (UML Component Diagram).

Figure 2. Dynamic OOSC model (UML Sequence Diagram).

application collects sensor data and annotates it with additional
context data, e.g., information about the production process.
The annotated data is then archived and used for historical and
nearly real-time analytics and monitoring presented to the end-
user. Our experience suggests that archival, annotation, and an-
alytics are the typical and most often used data transformations
in the data-driven applications.

Designing the system architecture for the described appli-
cation, we first follow the conventional approach suggested by
the OOSC paradigm, which we used to practice for years.
Then, we apply the FBP principles to the same task and
discuss this approach and its benefits in more details in the
next sections.

A. Applying OOSC Methodology

OOSC can be considered as a conventional methodology,
as it is the dominating approach in software development,
although Post Object-Orientation methodologies (Component-
based Engineering, Aspect-Oriented Development, Service-
Oriented Architectures) [18] are getting more attention re-
cently. Following the OOSC methodology, the requirements
elicitation is followed by the system design phase, during
which a number of static and dynamic models are created
and described using a visual notation language such as UML
(Unified Modeling Language).

217Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The static model of our application is provided in Figure
1. This component diagram describes the following subsys-
tems: Broker, DataRepository, DataSource, Annotator, Analyti-
calEngine, RESTfulAPI. These components are interconnected
using different interfaces: Pub, Sub, Annotation CRUD, and
Analytical CRUD, where CRUD stands for Create-Retrieve-
Update-Delete actions.

While static model describes the structural characteristics
of the system, the dynamic model describes its information
and control flows. A UML sequence diagram is shown in
Figure 2. An additional actor Dashboard is placed at the left of
the diagram to depict an interactive application that consumes
the output of our system. The Dashboard is communicating
with the RESTfulAPI component, which in turn queries the
DataRepository and returns either monitoring (raw) or analyti-
cal (implied) data. From the right of the diagram, two looping
sequences can be identified: annotating loop and analytics
loop. The former is retrieving sensor events from the Broker,
annotates them and puts in the DataRepository. The latter loop
receives a signal from the Broker about new data, queries the
DataRepository for raw data, performs calculation and puts
results back into the DataRepository.

According to the OOSC approach, designing the system
architecture is followed by the software implementation based
on the defined models by creating classes, components, li-
braries, and services, which layout at the code level typically
differs from the design models. For instance, in Java the
application can be implemented as a single multi-threaded
executable, or as a number of OSGi bundles. Independent of
the implementation, however, the implementation results in a
significant difference between the static and dynamic models,
and the way the actual code is executed. The sequence diagram
is the closest in resembling the data flow in the system, but
its interpretation is already challenging, not to mention how
difficult it is to read the Object-Oriented code that implements
these flows.

B. Applying Flow-based Programming Methodology

The data-driven applications represent a type of problems,
which are mainly concerned with data input, transformation,
storage and output. This is the area where the FBP method-
ology promises to help by designing the application as a flow
of interconnected building blocks.

In FBP, application is a network of interconnected reusable
components (black boxes). Each component has a number of
named input and output ports, which are used for receiving
incoming data and sending outgoing data correspondingly.
Components can be elementary and programmed in some
HLL (High-Level Language) or composite (defined as an FBP
network). The network execution engine or scheduler creates
a process for each component and establishes connections
between their input and output ports as bounded buffers. The
data chunks traveling across a connection are encapsulated into
IP (Information Packets), which can be grouped into streams
or tree-like hierarchies. The parametrization of a process is
performed using a special type of IP – IIP (Initial Information
Packet), which can also be sent by the scheduler. A detailed
description of the FBP can be found in [7] and [19].

In this work, we have used the output-backwards design
approach, starting from visual prototypes of the reports for
the end-users. While moving iteratively from the application
outputs to the core of the business logic, we were revising our
FBP network from a high-level composite components defini-
tion to the elementary components with a specific purpose to
be programmed right away.

On the first iterations, the top-level network diagram de-
scribing our application was produced as depicted in Figure
3, which depicts FBP components as rectangles. Reading the
diagram from left to right allows to follow the application busi-
ness logic and figure out the resulting output. The IPs stream
from the Data Source (a sensor network), flow to the PubSub
component, which sends IPs from RAW[0] and RAW[1] output
ports to the Monitoring Publisher and Data Annotator compo-
nents correspondingly. The Monitoring Publisher component
was dropped from the OOSC example intentionally to avoid
complex cluttered and non-readable diagrams. This component
transforms the data into a format suitable for the Monitoring
UI system, depicted as a subnetwork in the diagram. The Data
Annotator component annotates the incoming IPs and sends
them via its output port to the PubSub’s ANNIN input port.
The PubSub component splits the annotated IPs and sends
them to output ports ANNOT[0] and ANNOT[1], which are
connected to the IN ports of the Annotated Data Archiver and
the Analytics Calculator components correspondingly. The lat-
ter calculates the implied data from the received IPs and sends
it to the Analytics Data Archiver component. The Monitoring
UI and Analytics UI are depicted as 3rd party systems (or other
complex networks in terms of FBP). This description of the
data flow is clear enough for a client or the project manager,
but not for the developers. For implementation, the complex
components need to be described in fine-grained details and
each composite component needs to be defined as a network.

A detailed FBP network is presented in Figure 4. It
preserves the original layout, but provides more detailed
description of components and connections. The composite
components described previously are now marked with dot-
ted lines and consist of other elementary components. This
level of detail is already sufficient for implementation and,
as we will show it in the next section, the actual software
implementation also reflects this design. Note that even at
such level of detail, it is still possible to follow the data
flow from the Data Source and all subnetworks down to the
resulting output. There are also several repeating components:
STDOUTSUB (passes through IPs from the PubSub output to
the system standard output stream, stdout), STDINPUB (passes
through IPs from the system standard input stream, stdin, to
the PubSub input), CONVERT (transforms IPs to the storage
format of the database), DBWRITER (writes formatted IPs to
the database). The other new elementary components include:
DF (transforms IPs from the PubSub output to the format
acceptable by the monitoring system), SOCKSEND (sends the
IPs from its input to the TCP/UDP socket defined by the IIP),
TROUTER (parses the topic of the input IP and creates a
new IP with the parsed topic and data), CTXA (annotates the
incoming IPs with context data).

218Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Data Source OUT PubSub
RAWIN

RAW[0]

Monitoring Publisher
IN

Monitoring UIOUT
IN

Data Annotator
IN

RAW[1]
ANNIN

Annotated Data Archiver
IN

ANNOT[0]

Analyzed Data Archiver
IN

Analytics Calculator
INANNOT[1]

OUT

Analytics UI

Figure 3. Top-level view of the FBP application.

EMITTER TROUTER STDINPUB

Data Source

OUT

IN IN

OUT
OUT

STDOUTSUB SOCKSENDDF
OUT

IN

OUT

IN

Monitoring Publisher

PubSub

STDOUTSUB STDINPUBCTXA
OUT

IN

OUT

IN OUT

Data Annotator

RAWIN

ANNIN RAW[0]

RAW[1]
DBWRITERCONVERTSTDOUTSUB

IN

OUT

IN

OUT

Annotated Data Archiver

ANNOT[0]

ANNOT[1]

IN

IN

IN

IN
ANALYTICS

IN

OUT

SIGNAL

OUT

Analytics Calculator

DBWRITERCONVERT
OUT

IN

OUT

IN

DATA

OUT

STDOUTSUBSTDOUTSUB

DBREADER

Figure 4. Detailed view of the FBP application.

IV. IMPLEMENTATION

There are different ways to proceed with the actual system
implementation. There are many existing FBP development
platforms and frameworks, implemented in different program-
ming languages. In the appendix of [7][19], one can find
different related concepts, forerunners, and FBP-related tech-
nologies. Due to the distributed nature of the smart environ-
ment and the absence of a suitable ready-to-use solution, we
have started with a custom FBP system implementation by
integrating different 3rd-party systems, as described below.

A. Components and ports

Each elementary component depicted in Figure 4 is im-
plemented as a stand-alone executable in a language that in
our opinion is the most appropriate for its logic. Some of
the components are implemented in Java, some – in C/C++,
others – in Go. Each component is a self-sufficing program,
which can be used outside of the current application. The
EMITTER, TROUTER, STDOUTSUB, STDINPUB, and DF
programs were written in Go using its powerful share by
communication concurrency programming model. The PUB-
SUB component is implemented using the Mosquitto MQTT
broker [17], while CONVERT and ANALYTICS components
are written in Java. Ports of the components use different
protocols for interconnection: stdin/stdout, TCP/UDP sockets,
and MQTT [20].

B. Coordination language and scheduler

FBP distinguishes between programming languages: a HLL
is used to implement the logic of components and a coordina-
tion language is used to describe the data flow and the network
structure. The coordination language should be simple and
understandable to both developers and users of the system. In
the first iteration, we focused on the components and ports that

can be easily connected to each other. In order to accomplish
this, we used a Linux shell scripting language with POSIX
conventions for command line arguments of the executables
and UNIX pipes for stdin/stdout connections. Although it
is a powerful way to express the programming logic, it is
not an appropriate way to describe the connections. We are
currently evaluating a better DSL (Domain Specific Language)
for application description. One of the possible alternatives is
the NoFlo’s FBP language [21].

Another important part of the FBP system is the scheduler,
as described in Section III. In our prototype implementation,
we used the Foreman Procfile-based applications manager
tool [22] and the Upstart event-based process management
[23] as the FBP execution engine. This combination of tools
requires more efforts on manual description of the processes
and dependencies in order to execute the application. In the
future we are planning to implement the scheduler that would
require only a DSL-based description of the flow for execution.

V. CONCLUSION

The experience described in this paper is the first step
towards exploring the efficiency of the FBP methodology
applied for the data-driven applications development in the
domain of smart environments. The FBP approach mitigates
the gap between the information flow in the system design
and the control (execution) flow in its implementation. The
application design depicted in Figure 4 has been mapped to
a source code almost one-to-one, preserving the identical data
and control flows.

An FBP application consists of reusable building blocks,
and their reorganization into a new application does not
require code modification or recompilation, which enables the
component reuse and increases the development speed. It is
also independent of the HLL used for components implemen-
tation, enabling polyglot components in the system. As we

219Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

demonstrated, a simple coordinating language can be used to
create a flow from components written in Java, C/C++ and
Go: only ports definitions need to be known, which should
be obviously language-agnostic. Besides, FBP components
are interchangeable: each component can be replaced with
another block that has the same input and output ports. During
development we replaced the sensor network with an event
simulation component, and later we replaced a simple rule-
based annotator with a BPMN-driven [24] annotation system
without writing a single line of code.

The loose coupling between the components allows to
manage the code entropy at the low level: the unified flow for
data and control allows for easier identification of the faulty
component in the network and make the whole debugging
processes easier to follow. The unit testing is naturally applied
to a FBP application: each component is tested separately
by feeding fixtures to input ports and asserting the output
ports data against the expected results. The unit testing of the
complete application does not differ from testing a composite
component (which is a network of components by definition).

VI. FUTURE WORK

Despite the fact that we are referring to the FBP approach,
it is not implemented in our system completely yet, as only
some of its fundamental principles are applied at the moment.

Our next steps towards the further exploration of the
FBP approach for smart environment applications development
include the following: development of general purpose com-
ponents for most required transformations on the IPs in the
system; switching to a unified standard protocol for bounded
connections implementation; adding support for a coordination
DSL and development of a runtime system (scheduler) that
will use it for execution of application components; integration
with existing FBP visual editors, such as mentioned earlier
NoFlo UI or NodeRed to create a complete FBP development
environment.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
FP7/2007-2013 under Grant Agreement no. 257852

REFERENCES

[1] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker,
and A. Bassi, “Internet of things strategic research roadmap,” Internet
of Things-Global Technological and Societal Trends, 2011, pp. 9–52.

[2] A. B. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a
service and big data,” CoRR, vol. abs/1301.0159, 2013.

[3] F. V. Lingen. Data driven platforms to support iot, sdn, and
cloud. [Online]. Available: http://blogs.cisco.com/perspectives/data-
driven-platforms-to-support-iot-sdn-and-cloud/ (retrieved: June, 2014)

[4] D. Harris. Why the internet of things is big datas
latest killer app if you do it right. [Online].
Available: http://gigaom.com/2014/03/04/why-the-internet-of-things-is-
big-datas-latest-killer-app-if-you-do-it-right/ (retrieved: June, 2014)

[5] V. Trifa, “Building blocks for a participatory web of things: Devices,
infrastructures, and programming frameworks,” Ph.D. dissertation, ETH
Zurich, 2011.

[6] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” Communications
Surveys Tutorials, IEEE, vol. 16, no. 1, First 2014, pp. 414–454.

[7] J. Morrison, Flow-Based Programming, 2nd Edition: A
New Approach to Application Development. CreateSpace
Independent Publishing Platform, 2010. [Online]. Available:
http://books.google.de/books?id=R06TSQAACAAJ

[8] M. Carkci, Dataflow and Reactive Programming Systems. Lean
Publishing, 2014.

[9] M. Weiser, R. Gold, and J. S. Brown, “The origins of ubiquitous
computing research at parc in the late 1980s,” IBM Systems Journal,
Vol. 38, No 4, 1999.

[10] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical
mashups in the web of things,” in Proceedings of the 6th International
Conference on Networked Sensing Systems, ser. INSS’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 196–199. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1802340.1802386

[11] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[12] D. Harel and A. Pnueli, “Logics and models of concurrent systems,”
K. R. Apt, Ed. New York, NY, USA: Springer-Verlag New York,
Inc., 1985, ch. On the Development of Reactive Systems, pp. 477–498.
[Online]. Available: http://dl.acm.org/citation.cfm?id=101969.101990

[13] H. Bergius. Noflo - visual control flows for javascript. [Online].
Available: http://noflojs.org/ (retrieved: June, 2014)

[14] The New York Times Research & Development group. Tools for
working with streams of data. [Online]. Available:
https://github.com/nytlabs/streamtools (retrieved: June, 2014)

[15] IBM Emerging Technology. Node-red. [Online]. Available:
http://noflojs.org/ (retrieved: June, 2014)

[16] M. Jahn, M. Eisenhauer, R. Serban, A. Salden, and A. Stam, “Towards
a context control model for simulation and optimization of energy
performance in buildings,” in 9th European conference on product and
process modeling (ECPPM 2012), 3rd Workshop on eeBDM, eeBIM.
Reykjavik, Iceland, 2012.

[17] An Open Source MQTT v3.1/v3.1.1 Broker. Mosquitto. [Online].
Available: http://mosquitto.org/ (retrieved: June, 2014)

[18] A. Przybyek, “Post object-oriented paradigms in software development:
a comparative analysis,” in Proceedings of the International
Multiconference on Computer Science and Information Technology,
ser. IMCSIT’07, 2007, pp. 1009–1020. [Online]. Available:
http://www.proceedings2007.imcsit.org/pliks/67.pdf

[19] J. Morrison. Flow-based programming. [retrieved: June, 2014].
[Online]. Available: http://www.jpaulmorrison.com/fbp/ (2014)

[20] MQTT.ORG. MQ Telemetry Transport. [Online]. Available:
http://mqtt.org (retrieved: June, 2014)

[21] H. Bergius. Language for flow-based programming. [Online]. Available:
http://noflojs.org/documentation/fbp/ (retrieved: June, 2014)

[22] D. Dollar. Foreman - manage procfile-based applications. [Online].
Available: http://ddollar.github.io/foreman/ (retrieved: June, 2014)

[23] Canonical Ltd. Upstart - event-based init daemon. [Online]. Available:
http://upstart.ubuntu.com (retrieved: June, 2014)

[24] Object Management Group, Inc., “Bpmn: Business process model
and notation,” retrieved: June, 2014. [Online]. Available:
http://www.bpmn.org

220Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

