
Model Driven Development for Internet of Things

Application Prototyping

Ferry Pramudianto

Fraunhofer FIT

Schloss Birlinghoven

Sankt Augustin, Germany

Indra Rusmita

Bonn-Aachen International Center

for Information Technology

Dahlmannstraße, Bonn-Germany

Mathias Jarke

I5 RWTH Aachen University

Templergraben 55

Aachen, Germany

Abstract—We present an architectural view for the Internet of

Things prototype development that emphasizes the separation of

domain modeling from technological implementations. Using the

provided model driven tool, domain experts are able to construct

domain models easily by composing virtual objects and linking

them to the implementation technologies. Having them linked, a

prototype code in Java can be generated by the tool. The generated

code allows developers to extend it into full applications simply by

interfacing the virtual objects without dealing with the complexity

of specific sensors and actuators technologies. Subsequently,

participants involved in the European research projects evaluated

the architecture and the tool using a software walk-through

technique whose results are discussed in this paper.

Keywords-component; internet of things, architecture, domain

model, code generation, model driven development, service oriented

architecture.

I. INTRODUCTION

The Internet of Things (IoT) refers to an emerging paradigm
which envisions seamless integration among smart physical
objects, applications, and services that interact and communicate
among themselves by exchanging data and information[1]. The
growth of IoT community has been encouraged by the rapid
development of wireless sensor and actuator networks,
identification tags such as barcode and RFID, and electronic
prototyping platforms such as Arduino1. Nonetheless, IoT is still
very young research field where researchers and industry are still
trying to find a common ground to establish standardized
approaches. This has made IoT prototype development
challenging.

According to our interviews to the developers involved in
several European research projects dealing with IoT
applications, they often face problems during IoT developments
caused by the lack of technology and architecture
standardization. This is caused by the existence of different
visions for IoT[2]. The network-oriented vision focuses on the
communication for IoT devices. The “Thing” vision focuses on
identification through ID tags. The semantic oriented vision
focuses on processing the massive information generated by the
IoT. Despite several IoT architectures exist there is still an open
question on how the architecture reference could be designed in
a way that the domain modeling could be decoupled from the
implementation of specific IoT technology. Decoupling these
allows the knowledge about the domain to be engineered by

1 http://www.arduino.cc/

domain experts while the technology experts focus on
addressing the implementation of the IoT technology.

Addressing this research question, this paper proposes a
unique perspective on IoT architecture that separates the design
of the domain model and the implementation of the IoT
technology. Supporting the proposed architecture, this work also
proposes a model driven development (MDD) tool for linking
the domain model with the IoT implementations. Based on the
model definition, the tool will generate Java artifacts consisting
of the domain model as a virtualization of smart objects linked
to the concrete implementation of IoT technology. This allows
application developers to develop IoT applications using the
virtual objects without having to deal with the complexities of
any IoT technology.

II. RELATED WORK

The first use of IoT term was coined by The Auto-ID Labs
in their work to solve product traceability problems for the
supply chain management[3]. Together with the EPCGlobal
they have proposed a standard architecture for universally
identifying goods with RFID tags and a service registry network
for querying information of the tagged goods through third party
service providers[4] (Fig.1). However a survey claims that RFID
is only a part of broader IoT vision where smart objects
autonomously cooperate with each other[2].

Figure 1. EPCGlobal Architecture[5]

Another survey presented a five layer architecture that
placed the internet as a middle layer which functions as the main
communication media (Fig.2) [6]. The edge layer manages

devices such as embedded systems, sensors, actuators, and ID
tags. The access gateway layer cares about bridging different
communication technologies to the internet. The main task of
this layer is performing a routing optimization, bridging the
different communication protocols to the internet protocols (e.g.
TCP/IP), and forwarding data from the edge nodes to the other
end across the internet.

Figure 2. Generic Layered Architecture for IoT[6]

The middleware layer provides generic interfaces for the
applications to communicate with the internet of things. Many
approaches have been used for abstracting IoT devices e.g.: data
oriented middleware uses SQL-like query languages to retrieve
information from the sensor nodes, service oriented architecture
(SoA) middleware has been proposed to support the integration
of among “Things”, legacy systems, and the necessary
infrastructure while providing interoperable web services for the
applications accessing them [7-9]. This layer may also perform
device and information management by utilizing data fusion,
semantic analysis, access control, information discovery.

Figure 3. SOA-based architecture for the IoT middleware[2]

SoA middleware also introduces a service management layer
that deals with service discovery, execution monitoring, and
configuration. For the discovery purposes, a service registry is
usually used. This approach provides an abstraction of various
communication technology by encapsulating them with web
services. SoA depends on workflow and web service
composition languages such as WSBPEL2 to provide services
that are more complex.

III. ARCHITECTURE

Our work offers a unique perspective of an IoT architecture
that places the domain modeling in the center of the architecture.

2 https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=wsbpel

This is done so to emphasize the seperation of the knowledge
engineering that happens during domain modeling with the
technical engineering that happens during the implementations.
As a result, this approach enables domain knowledge to be
modeled by the domain experts that are not familiar with
programming languages but familiar with languages used for
managing knowledge in the domain e.g. ontology. This approach
will also allow the domain model and the device
implementations to evolve independently over time without
having to reengineer the whole systems.

Gateways, Device Drivers, Data Importer

Domain Object Virtualization

Applications

Fusion

Abstraction

Physical Devices, Database, Legacy System

D
o

m
a

in

M
o

d
e

l
O

u
tp

u
t

A
p

p
s

In
p

u
t

Pr
e-

Pr
oc

es
si

ng

Figure 4. Architecture for object virtualization in IoT Applications

As depicted in Fig.4, the domain model layer in our
architecture contains the domain knowledge such as the
relationship of the objects, their capabilities and their properties
as perceived by the domain experts. For instance when
developing a monitoring application for a smart building, these
objects may consist of the occupants, building structures (e.g.
floors, rooms, windows), appliances (e.g. radio, monitor, air
conditioner). Furthermore, this layer is responsible for
virtualizing the physical “Things” that participate in the
application domain. By virtualizing, we meant that the physical
objects alone might not be able to interact with the applications
without the support of devices such as sensors, actuators, and ID
tags. Therefore, the representation of these objects may be
composed of the supporting devices, which we refer as the
enabler devices. These enabler devices should be completely
transparent to the domain experts when they define the domain
model.

Modeling the relations among virtual objects can be done
using modeling languages such as UML, Ontology, or a
simplified Domain specific language (DSL) that can be
understood by the domain experts. As a proof of concept, this

work uses a simplified graphical DSL designed for rapid
prototyping (see section 4).

On the lowest layer, the enabler devices are managed and
abstracted with a common interface that is understood by the
upper layer. A common approach used in the lowest layer is the
use of bridge or gateways for different networks that allows
communication to be estabished with applications using TCP/IP
protocol. For instance in industrial automation, an OPC server is
often used as a bridge to access BUS networks. This architecture
pattern is also used by the emerging IoT technology such
Zigbee[10] and 6LowPAN[11]. In contrast, communicating with
legacy systems require various technologies which are diverse
from domain to domain. Some of the legacy applications offer
an application programming interface (API) in propriatery
languages, some of them use database and log files to retrieve
data, and some of them provide web services. In the industrial
setting where Enterprise Resource Planing (ERP) and
Manufacturing Execution System (MES) are invoved, ISA-
95[12] is the common standard to retrieve and store data from
these systems.

Additionally, since the internet and web provide a huge
amount of information that can be useful, the architecture should
take into account that the applications might need to access the
online services such as, weather forecasts, stock prices,
exchange rates, or information about people from their social
network sites. For this purposes normally web service
technologies can be used.

Abstracting the heterogenous technologies involved in the
lowest layer may use web service technologies such as
SOAP[13] and REST[14] since they offer interoperable services
supported by different programming languages. However, at the
moment the practicability of web service technology for time
critical applications and resource constrain devices is still
debatable. A more resource efficient protocols such as
CoAP[15] is being developed for this purpose.

On the upper layer, the data delivered from the lowest layer
sometimes must be be pre-processed to extract contextual
information that is useful for the applications. This information
could be as simple as determining a room temperature from the
thermometer readings to a more complex information such as
determining the activities, taking place in a room based on
several sensor readings, or providing a contextual information of
the users (e.g.: if the room temperature is too cold for this
particular user). Thus, the fusion layer provides several generic
pre-processing modules that are usefull for e.g.: filtering
outliers, averaging the data over time and space, applying high-
pass - low pass filter, interpolating the data (e.g.: Kalman Filter).
The fusion layer can be extended by providing more domain
specific fusion modules to derive information that is not possible
to be sensed by a type of sensor.

When the domain model has been defined and the
technology implementations in the first and second layer have
been done, these layers need to be mapped in order to produce a
functional application prototypes. The mapping follows a simple
input output interaction between components in different layers
and the virtual objects. For instance, the property of the virtual
object “room” is linked to a processing module “average” that is
linked to two thermometers. Based on this linked components,

the property of the room will automatically be updated with the
values coming out from the processing module, which contains
the averaged temperature data coming from the two linked
sensors. As the properties of the virtual objects always contain
the actual values, the developers simply need to work with the
virtual objects without worrying the technical details to access
the thermometers.

IV. DOMAIN MODELING TOOL DEVELOPMENT

As a proof of concept of the proposed architecture, we
developed a domain-modeling tool that supports domain experts
designing domain models containing virtual objects. We build
the tool based on the requirements of twelve developers involved
in several European research projects dealing with IoT. The
requirement elicitation was done through a focus group
workshop where the developers are given scenario to build IoT
prototypes. Then, we discussed about a visionary tool that could
help them solving their tasks rapidly. The outcome from the
focus group reveals that the developers are in favor of a graphical
model driven tool that would help the domain experts designing
the domain model and then allows them to map the virtual
objects to the sensor and actuators. They would like to have the
domain model defined using simple notations that can be quickly
explained to non-computer scientist users. Finally, the tool
should generate a Java code that can be extended to develop their
final applications. After the requirements are collected, we
designed the user interface mockup and iteratively evaluated it
with the users who.

A. User Interface Mockup

Figure 5. The mock up user interface for the development tool

The mockup GUI composed of several views including
Project View, Editor View, Palette View, and Properties View
(figure 5). On the toolbar, there is a button to generate the
necessary Java artifacts from the defined model including the
Java code of the virtual objects, the mappings to the physical
objects, and the library to access the physical objects. The
Project View may contain several projects. Each project may
consist of several domain model diagrams, which each of them
contains the definition of the virtual objects, their properties, and
links to the processing modules, data providers, and actuators.
We created a set of simple notations to simplify defining a
domain model and the mappings to sensors and actuators.
However, our notations are not as expressive as UML and
Ontology as it is not intended to support development for
complex applications. These notations are presented in the
Palette view. The notations consist of rectangles that can be
containers for other rectangles and linked using arrows to map

the relationship among the objects. These atomic notations are
grouped using a tabular menu depending upon the type of the
notations. The Editor View is the main container where the
developers could define the domain model using the provided
notations. In the Property View users can modify the properties
of the notations depending the type of the notation.

B. Modeling Tool

The modeling tool is built with the Eclipse Modeling
Framework (EMF)3which is responsible for defining the meta
model of the proposed architecture depicted in Fig.4. We use
Graphical Modeling Framework (GMF) 4 for generating the
MDD editor used for our domain specific language. Firstly, the
tool was built by defining the ECore model, which is needed by
EMF(Fig.7) as the meta model for the tool. The ECore model
was defined to have a main container and several containers.
These containers include containers for the Data Provider, Pre-
Processing, Virtual Object, and Application Interface. Each of
these containers could contain more than an implementation of
the abstract classes depicted in the center row of Fig.7. We
implemented the abstract classes as examples that are useful for
evaluating the tool against the user requirements. These abstract
classes are extendable when further IoT technologies to be added
in the future.

After creating the meta-model, we use the EMF Generator
Model to generate the plugin projects that we need to implement
such as the “Model Code”, the “Edit Code”, the “Editor Code”,
and the Java Interfaces. After the skeleton is generated, we used
GMF to create a diagram editor using GMF Tooling. We edited
the gmfgraph to define the graphical notations and gmftool to
define the tooling of the editor such as menu, and palate.
Moreover, in the gmfmap, we mapped the notations to the
domain model of the tool defined by the EMF. We use EMF also
to provide serialization of the model defined by the users.
Currently it only supports XMI5 format, which can be stored and
opened back to the editor view when the users want to continue
working on them. The serialization can be done in other formats,

3 http://www.eclipse.org/modeling/emf/
4 http://www.eclipse.org/modeling/gmp/

however for the sake of simplicity we took the standard format
provided by EMF.

The base classes are implemented as Eclipse plugins. This
provides flexibility when further components need to be
integrated into the tool. For instance the Connection base is
implemented as an eclipse plugin which is extended by two other
eclipse plugins containing implementations to create
connections to the corresponding devices. These base classes
provide an abstract factory to be used by the wizards in the
eclipse IDE for retrieving the actual implementations of the
plugins.

C. The code generator

The code generator is implemented using Xpand for
generating Java code and the necessary artifacts based on a set
of template codes. The template codes contain all
implementations of the abstract classes defined in the ECore
model that take into account adjustments that the users will
define when modeling the prototype applications. These
adjustments include adjusting the package and class names,
assigning the values of the sensors to processing module,
assigning the output of the processing modules to the properties
of the virtual objects. These adjustments will be generated by the
Xpand plugins that we have developed. After the template code
is adjusted and generated, XPand additionally generate an
eclipse Java Project and all the necessary artifacts such as
libraries and a run configuration that the users need to run the
generated project properly.

In the current implementation, the generated java project will
consist of the chosen connections. There are two connections
supported Plugwise6 and Arduino which are connected through
the serial ports.

D. The workflow of the tool.

When developing a new application prototype with the tool,
several steps as depicted in Fig. 8 must be followed. The users
start with creating a new project and entering its name. Next, the

5 http://www.omg.org/spec/XMI/
6 http://www.plugwise.com

Figure 7. ECore Model of the Proposed Tool

ECore model

users create a new domain model diagram and enter its name.
Then, the users can start designing the domain model on the
editor view as depicted in fig. 12(B). Designing the domain is
started by adding the main container for the virtual objects, and
the virtual objects themselves in the container. The virtual
objects can contain other virtual objects that denote “a part-of”
relationship.

Add Virtual
Object

Container

Add Virtual
Objects
in their

containers

Generate
Code

Extend
Code with

application logic

Link Pre
Processing

Modules with
Virtual Objects

Add & Configure
Application

Interface

Link Virtual
Objects with
Application
Interfaces

Add &
Configure Data

Providers

Add & Configure
Pre-Processing

Modules

Link Data
Providers with
Pre Processing

Modules

Implement the
missing Pre-
Processing
modules

Processing
Module

Complete

No

Yes

Figure 8. A simplified workflow of the development with the tool

After the domain model is defined, the users could add
predefined processing modules. In case the needed modules is
not available, software developers may implement the modules
by extending the corresponding plugins. When the needed
processing modules have been added to the Editor View, the
users link the properties of the virtual objects to the modules and
then the modules also have to be linked to the data providers.
Finally, the users add the application interface such as SOAP, or
REST, and link the application interface to the virtual objects so
that the tool knows which virtual objects it needs to expose to
the applications and with which technology it should be done.
After all necessary associations have been done, the user can
generate the Java project that can be run and accessed from their
application through the chosen application interfaces.

V. EVALUATION

A software walkthrough [16] was performed to evaluate the
users acceptance to the proposed architecture and the proposed
MDD tool. The evaluation was done with 7 participants (6 male
and a female). Six of them are system developers who are
working in Fraunhofer FIT and participate in European research
projects dealing with IoT implementations in different domains.
A participant is a student of the technical university of Aachen
(RWTH Aachen) who also works in an IoT project at Fraunhofer
FIT. Their experience in application developments range
between 2 until 6 years. The participants are between 25 and 35
years old.

Figure 9. Arduino Board(A), Light Sensor(B), Digital Thermometer (C),

Plugwise (D).

The equipment used to perform the evaluation consists of an
Arduino board (Fig. 9. A), a light intensity sensor (Fig. 9. B), a
digital thermometer (Fig. 9. C), and a Plugwise (Fig. 9. D). The
Arduino board was used to retrieve data from the light and
temperature sensors and send them through a serial port. To
communicate with Plugwise, a Zigbee USB receiver was used.

Figure 10. User satisfaction of the proposed architecture

The participants were given a task to display sensor values
from a temperature, a light sensor attached to an Arduino board,
and the power meter. After they had performed the task, they
were given a questionnaire to review the proposed architecture,
and the tool. To ensure the result of the study could be compared
to similar works in the future, some questions of the
questionnaire were taken from the IBM Computer System
Usability Questionnaire[17]. The questions were presented with
7-level Likert-scale options where “7” denotes “Strongly
Disagree” down to “1” which means “Strongly Agree”.

As depicted in Fig. 10, the result of the questionnaire
regarding the architecture shows that the users felt it was easy to
understand (M=1.86, SD=0.64) and its functions were clearly
defined (M=2, SD=0.82). Secondly, the proposed architecture
helped the user developing the intended functional prototype
(M=1.8, SD=0.4). Overall the users were satisfied to the
architecture design (M=1.89, SD=0.67).

Furthermore, to investigate the user satisfactions to the
overall work, of the participants were given a task to solve with
the proposed tool and Eclipse’s EMF tool. The order of the tool
used by each participant was exchanged to minimize the learning
effect. Then the users were asked to rate the overall experience
working with the tool using DSL notations compared to the EMF
using UML notations.

The questions were divided into four categories that include
the overall experience with the framework (Overall), the
functionalities of the tool (Tool Functions), the workflow to be
done when working with the tool (Workflow), and the user
interface of the tool (UI). The questions are again adopted from
the [17].

Figure 11. Comparisson between EMF tool & IoT Modeling Tool

1.80
2.00

1.86 1.89

1

3

5

7

Q1 Q2 Q3 Overall

Q1 : The concept covers all the components for intended use.
Q2 : The flow between components is clearly defined.
Q3 : It was easy to learn the concept.

2.8 2.5 2.6 2.6
3.6 3.5 3.8 3.6

1

3

5

7

Tool Functions Tool Workflow Tool UI Overall

Proposed Tool EMF Tool

A B C D

Figure 12. EMF with UML notation (A) vs. IoT Modeling Tool with DSL

notation (B)

The score comparison between our work and EMF Tool are
presented in Fig. 11. Overall, the writer’s work scored better
compare to the EMF tool with an UML diagram.

A paired sample T-Test analysis was performed to
investigate if the difference between user’s satisfaction to the
writer’s work and EMF tool is statistically significant. The result
of the questionnaire shows that even though the
proposubiquotous ed tool scored a better means in all categories
there was no significant differences of user satisfaction for the
Functions, Workflow, and Overall [T(7)=1.2, p>.5), (T(7)=-
1.38, p>.5), (T(7)=-2.04, p>.5) respectively]. Interestingly, the
user opinions were significantly affected by the user interface of
the tools (T(7)=-2.66, p<.5).

The fact that the user opinions are affected by the user
interface indicates that a simplified domain specific language
serves a better purpose for simple prototyping tasks than
complex modeling languages such as UML since the users are
faced with simplicity and less options that may overwhelm them
in solving the tasks.

VI. CONCLUSSION & FUTURE WORK

The current approaches of IoT architectures have overlooked
the importance of domain modeling in the application
development. This work has presented a unique perspective that
positions domain modeling and object virtualization in the center
of the architecture. Moreover, this work has proposed a tool that
augments the proposed architecture by allowing the domain
model to be linked to the IoT implementations. Consequently,
the complexity of IoT implementations is transparent for the
application developers, as they only need to work with the
virtual objects generated by the tool. The results of the
preliminary evaluation support our claim that the proposed
architecture and the model driven tool have a potential to ease
IoT application development.

The next steps for this work are to provide an easy way for
the domain experts to express their domain knowledge related to
policies and rules that are difficult to express through a graphical
notations. For this purpose, the tool could be extended by

integrating a rule engine in the generated code. This approach
allows policies to be dynamically modified without recompiling
the application. Once the tool has enough features to support
complex application developments, we also would like to
perform evaluation with more users in a longer period of time.

VII. ACKNOWLEDGEMENT

This work was co-funded by the European Commission
through EBBITS (FP7-ICT-2009.1.3, GA No. 257852) and
BEMOCOFRA (FP7-ICT-2011-EU-Brazil, GA No. 288133)

VIII. REFERENCES

[1] Guillemin, P., and Friess, P.: ‘Internet of Things: Strategic Research
Roadmap’, CERP-IoT Project, 2009

[2] Atzori, L., Iera, A., and Morabito, G.: ‘The internet of things: A survey’,
Computer Networks, 2010, 54, (15), pp. 2787-2805

[3] Bose, I., and Pal, R.: ‘Auto-ID: managing anything, anywhere, anytime in
the supply chain’, Communications of the ACM, 2005, 48, (8), pp. 100-
106

[4] Johnson, F.A.J., Harrison, M., US, B.H.G., Mitsugi, J., Preishuber, J.,
CVS, O.R., and Suen, K.: ‘The EPCglobal Architecture Framework’,
2005

[5] Shih, D.-H., Sun, P.-L., and Lin, B.: ‘Securing industry-wide EPCglobal
network with WS-security’, Industrial Management & Data Systems,
2005, 105, (7), pp. 972-996

[6] Bandyopadhyay, D., and Sen, J.: ‘Internet of Things: Applications and
Challenges in Technology and Standardization’, Wireless Personal
Communications, 2011, 58, (1), pp. 49-69

[7] de Souza, L., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., and
Savio, D.: ‘Socrades: A web service based shop floor integration
infrastructure’, The Internet of Things, 2008, pp. 50-67

[8] Jammes, F., and Smit, H.: ‘Service-oriented paradigms in industrial
automation’, Industrial Informatics, IEEE Transactions on, 2005, 1, (1),
pp. 62-70

[9] Eisenhauer, M., Rosengren, P., and Antolin, P.: ‘A development platform
for integrating wireless devices and sensors into ambient intelligence
systems’, in Editor (Ed.)^(Eds.): ‘Book A development platform for
integrating wireless devices and sensors into ambient intelligence
systems’ (IEEE, 2009, edn.), pp. 1-3

[10] Alliance, Z.: ‘Zigbee specification’, ZigBee document 053474r06,
version, 2006, 1, pp. 378

[11] Mulligan, G.: ‘The 6LoWPAN architecture’, ‘Book The 6LoWPAN
architecture’ (ACM, 2007, edn.), pp. 78-82

[12] Scholten, B.: ‘The road to integration: A guide to applying the ISA-95
standard in manufacturing’ (Isa, 2007. 2007)

[13] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen,
H.F.: ‘Simple object access protocol (SOAP) 1.2’, World Wide Web
Consortium, 2003

[14] Fielding, R.T.: ‘Chapter 5: Representational State Transfer (REST)’,
Architectural Styles and the Design of Network-based Software
Architectures, Dissertation, 2000

[15] Shelby, Z., and Team, C.A.: ‘Constrained Application Protocol (CoAP)
draft-ietf-core-coap-04’, IETF work in progress, 2011

[16] , R.: ‘The streamlined cognitive walkthrough method, working around
social constraints encountered in a software development company’,
‘Book The streamlined cognitive walkthrough method, working around
social constraints encountered in a software development company’
(ACM, 2000, edn.), pp. 353-359

[17] Lewis, J.R.: ‘ IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use’, International Journal
of Human‐Computer Interaction, 1995, 7, (1), pp. 5

A

B

